

2SP0115T2B0-FF600R06ME3 and 2SP0115T2B0C-FF600R06ME3 Data Sheet

Compact, high-performance, plug-and-play dual-channel IGBT driver based on SCALE™-2 technology for individual and parallel-connected modules

Abstract

The SCALETM-2 plug-and-play driver 2SP0115T2B0-FF600R06ME3 / 2SP0115T2B0C-FF600R06ME3 (Coated version using ELPEGUARD SL 1307 FLZ/2 from Lackwerke Peters with a typical thickness of $50\mu m$) is a compact dual-channel intelligent gate driver designed for Infineon's EconoDUALTM IGBTs FF600R06ME3. The driver features an electrical interface with a built-in DC/DC power supply.

For drivers adapted to other types of high-power and high-voltage IGBT modules, refer to

www.power.com/gate-driver/go/plug-and-play

Features

- ✓ Plug-and-play solution
- ✓ Allows parallel connection of IGBT modules
- ✓ Shortens application development time
- ✓ Extremely reliable; long service life.
- ✓ Built-in DC/DC power supply
- ✓ 20-pin flat cable interface
- ✓ Duty cycle 0... 100%
- ✓ Active clamping of V_{ce} at turn-off
- ✓ IGBT short-circuit protection
- ✓ Monitoring of supply voltage
- ✓ Safe isolation to EN 50178
- ✓ UL compliant
- ✓ Suitable for FF600R06ME3

Applications

- ✓ Wind-power converters
- ✓ Industrial drives
- **✓** UPS
- ✓ Power-factor correctors
- ✓ Traction
- ✓ Railroad power supplies
- ✓ Welding
- ✓ SMPS
- ✓ Radiology and laser technology
- ✓ Research
- ✓ and many others

EconoDUAL is a trademark of Infineon Technologies AG, Munich

Safety Notice!

The data contained in this data sheet is intended exclusively for technically trained staff. Handling all high-voltage equipment involves risk to life. Strict compliance with the respective safety regulations is mandatory!

Any handling of electronic devices is subject to the general specifications for protecting electrostatic-sensitive devices according to international standard IEC 60747-1, Chapter IX or European standard EN 100015 (i.e. the workplace, tools, etc. must comply with these standards). Otherwise, this product may be damaged.

Important Product Documentation

This data sheet contains only product-specific data. For a detailed description, must-read application notes and common data that apply to the whole series, please refer to "Description & Application Manual for 2SP0115T SCALE-2 IGBT Drivers" on www.power.com/gate-driver/qo/2SP0115T.

When applying SCALE-2 plug-and-play drivers, please note that these drivers are specifically adapted to a particular type of IGBT module. Therefore, the type designation of SCALE-2 plug-and-play drivers also includes the type designation of the corresponding IGBT module. These drivers are not valid for IGBT modules other than those specified. Incorrect use may result in failure.

Mechanical Dimensions

Dimensions: Refer to "Description & Application Manual for 2SP0115T SCALE-2 IGBT Drivers" Mounting principle: Soldered onto EconoDUAL $^{\text{TM}}$ module FF600R06ME3

Absolute Maximum Ratings

Parameter	Remarks	Min	Max	Unit
Supply voltage V _{CC}	VCC to GND	0	16	V
Logic input and output voltages	To GND	-0.5	VCC+0.	5 V
SO _x current	Fault condition, total current		20	mA
Gate peak current I _{out}	Note 1	-8	+15	Α
Average supply current I _{CC}	Note 2		290	mA
Output power per gate	Ambient temperature ≤ 70°C (Note 3)		1.2	W
	Ambient temperature ≤ 85°C (Note 3)		1	W
Switching frequency f			10	kHz
Test voltage (50Hz/1min.)	Primary to secondary (Note 16)		3800	$V_{AC(eff)}$
	Secondary to secondary (Note 16)			$V_{AC(eff)}$
DC-link voltage	Note 4		400	V
dV/dt	Rate of change of input to output voltage		50	kV/μs
Operating voltage	Primary/secondary, secondary/secondary		1200	V_{peak}

SCALE[™]-2 2SP0115T2B0(C)-FF600R06ME3

Data Sheet

Parameter	Remarks	Min	Max	Unit
Operating temperature		-40	85	°C
Storage temperature	Note 20	-40	50	°C
Surface temperature	Only 2SP0115T2B0C-FF600R06ME3 (Note 21)		125	°C

Recommended Operating Conditions

Parameter	Remarks	Min	Тур	Max	Unit
Supply voltage V _{CC} Resistance from TB to GND SO _x current	To GND Blocking time ≠ 0, ext. value Fault condition, 3.3V logic	14.5 128	15	15.5 ∞ 4	V kΩ mA

Electrical Characteristics

Power Supply	Remarks	Min	Тур	Max	Unit
Supply current I _{CC}	Without load		33		mA
Efficiency η	Internal DC/DC converter		85		%
Coupling capacitance C _{io}	Primary side to secondary side, total, per channel		23		pF
Power Supply Monitoring	Remarks	Min	Тур	Max	Unit
Supply threshold V _{CC}	Primary side, clear fault	11.9	12.6	13.3	V
	Primary side, set fault (Note 5)	11.3	12.0	12.7	V
Monitoring hysteresis	Primary side, set/clear fault	0.35			V
Supply threshold V _{isox} -V _{eex}	Secondary side, clear fault	12.1	12.6	13.1	V
	Secondary side, set fault (Note 6)	11.5	12.0	12.5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.35			V
Supply threshold V _{eex} -V _{COMx}	Secondary side, clear fault	5	5.15	5.3	V
	Secondary side, set fault (Note 6)	4.7	4.85	5	V
Monitoring hysteresis	Secondary side, set/clear fault	0.15			٧
Logic Inputs and Outputs	Remarks	Min	Тур	Max	Unit
Input impedance	V(INx) > 3V (Note 7)	3.5	4.1	4.6	kΩ
Turn-on threshold	V(INx) (Note 8)		2.6		V
Turn-off threshold	V(INx) (Note 8)		1.3		V
SOx output voltage	Fault condition, I(SOx) < 8mA			0.7	V

Short-circuit Protection	Remarks	Min	Тур	Max	Unit
Vce-monitoring threshold	Between auxiliary terminals		10.2		V
Response time	DC-link voltage = 400V (Note 9)		2.4		μs
Delay to IGBT turn-off	After the response time (Note 10)		1.4		μs
Blocking time	After fault (Note 11)		90		ms
Timing Characteristics	Remarks	Min	Тур	Max	Unit
Turn-on delay t _{d(on)}	Note 12		75		ns
Turn-off delay t _{d(off)}	Note 12		65		ns
Jitter of turn-on delay	Note 18		±2		ns
Jitter of turn-off delay	Note 18		±4		ns
Output rise time $t_{r(out)}$	G_x to E_x (Note 13)		5		ns
Output fall time $t_{f(out)}$	G_x to E_x (Note 13)		10		ns
Dead time between outputs	Half-bridge mode (Note 19)		3		μs
Jitter of dead time	Half-bridge mode		±50		ns
Transmission delay of fault state	Note 14		400		ns
Outputs	Remarks	Min	Тур	Max	Unit
Turn-on gate resistor R _{g(on)}	Note 15		2.5		Ω
Turn-off gate resistor R _{g(off)}	Note 15		3.3		Ω
Gate voltage at turn-on			15		V
Gate-voltage at turn-off	P=0W		-9.2		V
	P=1.2W		-7.1		V
Gate resistance to COMx			4.7		kΩ
Electrical Isolation	Remarks	Min	Тур	Max	Unit
Test voltage (50Hz/1s)	Primary to secondary side (Note 16)	3800	3850	3900	$V_{\rm eff}$
	Secondary to secondary side (Note 16)	3800	3850	3900	$V_{\rm eff}$
Partial discharge extinction volt.	Primary to secondary side (Note 17)	1220			V_{peak}
	Secondary to secondary side (Note 17)	1200			V_{peak}
Creepage distance	Primary to secondary side	12.6			mm
	Secondary to secondary side	6.6			mm
	Primary to NTC	6.5			mm
Clearance distance	Primary to secondary side	12.3			mm
Cicarance distance	Secondary to secondary side	6.6			mm
	Primary to NTC	6.5			mm
	Timaly to IIIC	0.5			

All data refer to $+25^{\circ}$ C and $V_{CC} = 15V$ unless otherwise specified

Footnotes to the Key Data

- 1) The gate current is limited by the gate resistors located on the driver.
- 2) If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload.
- 3) If the specified value is exceeded, this indicates a driver overload. It should be noted that the driver is not protected against overload. From 70°C to 85°C, the maximum permissible output power can be linearly interpolated from the given data.
- 4) This limit is due to active clamping. Refer to the "Description & Application Manual for 2SP0115T SCALE-2 IGBT Drivers".
- 5) Undervoltage monitoring of the primary-side supply voltage (VCC to GND). If the voltage drops below this limit, a fault is transmitted to the corresponding outputs and the IGBTs are switched off.
- 6) Undervoltage monitoring of the secondary-side supply voltage (Visox to Veex and Veex to COMx which correspond with the approximate turn-on and turn-off gate-emitter voltages). If the corresponding voltage drops below this limit, the IGBT is switched off and a fault is transmitted to the corresponding output.
- 7) The input impedance can be modified to values <18 k Ω (customer-specific solution).
- 8) Turn-on and turn-off threshold values can be increased (customer-specific solution).
- 9) The resulting pulse width of the direct output of the gate drive unit for short-circuit type I (excluding the delay of the gate resistors) is the sum of response time plus delay to IGBT turn-off.
- 10) The turn-off event of the IGBT is delayed by the specified time after the response time.
- 11) Factory set value. The blocking time can be reduced with an external resistor. Refer to the "Description & Application Manual for 2SP0115T SCALE-2 IGBT Drivers".
- 12) Measured from the transition of the turn-on or turn-off command at the driver input to direct output of the gate drive unit (excluding the delay of the gate resistors).
- 13) Output rise and fall times are measured between 10% and 90% of the nominal output swing with an output load of 10Ω and 40nF. The values are given for the driver side of the gate resistors. The time constant of the output load in conjunction with the present gate resistors leads to an additional delay at the load side of the gate resistors.
- 14) Transmission delay of the fault state from the secondary side to the primary status outputs.
- 15) The gate resistors can be leaded or surface mounted. Power Integrations reserves the right to determine which type will be used. Typically, higher quantities will be produced with SMD resistors and small quantities with leaded resistors.
- 16) HiPot testing (= dielectric testing) must generally be restricted to suitable components. This gate driver is suited for HiPot testing. Nevertheless, it is strongly recommended to limit the testing time to 1s slots as stipulated by EN 50178. Excessive HiPot testing at voltages much higher than $850V_{AC(eff)}$ may lead to insulation degradation. No degradation has been observed over 1min. testing at $3800V_{AC(eff)}$. The transformer of every production sample shipped to customers has undergone 100% testing at the given value or higher (< $5100V_{AC(eff)}$) for 1s.
- 17) Partial discharge measurement is performed in accordance with IEC 60270 and isolation coordination specified in EN 50178. The partial discharge extinction voltage between primary and either secondary side is coordinated for safe isolation to EN 50178.
- 18) Jitter measurements are performed with input signals INx switching between 0V and 15V referred to GND, with a corresponding rise time and fall time of 8ns.
- 19) Note that the dead time may vary from sample to sample. A tolerance of approximately ±20% may be expected. If higher timing precisions are required, Power Integrations recommends using direct mode and generating the dead time externally.
- 20) The storage temperature inside the original package (1) or in case the coating material of coated products may touch external parts (2) must be limited to the given value. Otherwise, it is limited to 90°C.
- 21) The component surface temperature, which may strongly vary depending on the operating condition, must be limited to the given value for coated driver versions to ensure long-term reliability of the coating material.

Legal Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Ordering Information

Our international terms and conditions of sale apply.

Power Integrations Driver Type #

Related IGBT

2SP0115T2B0-FF600R06ME3 (Temperature range -40°C...85°C) 2SP0115T2B0C-FF600R06ME3 (Temperature range -40°C...85°C, conformal coating)

FF600R06ME3 FF600R06ME3

Product home page: www.power.com/gate-driver/go/2SP0115T

Refer to www.power.com/gate-driver/go/nomenclature for information on driver nomenclature

Information about Other Products

For other drivers, evaluation systems product documentation and application support

Please click: www.power.com

Power Integrations Sales Offices

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138 USA Tel: +1-408-414-9200 Fax: +1-408-414-9765 Email: usasales@power.com

AMERICAS WEST

5245 Hellyer Avenue San Jose, CA 95138 USA Tel: +1-408-414-8778 Fax: +1-408-414-3760 Email: usasales@power.com

GERMANY (AC-DC/LED Sales)

Einsteinring 24 85609 Aschheim, Germany

Tel: +49-89-5527-39100 Fax: +49-89-1228-5374 Email: <u>eurosales@power.com</u>

INDIA (Mumbai)

Unit: 106-107, Sagar Tech Plaza-B Sakinaka, Andheri Kurla Road Mumbai, Maharashtra 400072 India Tel 1: +91-22-4003-3700

Tel 1: +91-22-4003-3700 Tel 2: +91-22-4003-3600 Email: <u>indiasales@power.com</u>

JAPAN

Kosei Dai-3 Bldg. 2-12-11, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa

Tel: +81-45-471-1021 Fax: +81-45-471-3717 Email: japansales@power.com

TAIWAN

Japan 222-0033

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist.

Taipei, 114 Taiwan Tel: +886-2-2659-4570 Fax: +886-2-2659-4550

Email: taiwansales@power.com

AMERICAS EAST

7360 McGinnis Ferry Road Suite 225 Suwannee, GA 30024 USA Tel: +1-678-957-0724 Fax: +1-678-957-0784

Email: <u>usasales@power.com</u>

CHINA (Shanghai) Room 2410, Charity Plaza No. 88 North Caoxi Road Shanghai, 200030 China Tel: +86-21-6354-6323 Fax: +86-21-6354-6325

Email: chinasales@power.com

GERMANY (Gate Driver Sales)

HellwegForum 1 59469 Ense, Germany Tel: +49-2938-64-39990

Email: gate-drivers.sales@power.com

INDIA (New Dehli) #45, Top Floor

Okhla Industrial Area, Phase - III New Dehli, 110020 India Tel 1: +91-11-4055-2351 Tel 2: +91-11-4055-2353

Tel 2: +91-11-4055-2353 Email: indiasales@power.com

KOREA

RM602, 6FL, 22 Teheran-ro 87-gil, Gangnam-gu Seoul, 06164 Korea

Tel: +82-2-2016-6610 Fax: +82-2-2016-6630 Email: koreasales@power.com

UNITED KINGDOM

Bulding 5, Suite 21 The Westbrook Centre Milton Road Cambridge, CB4 1YG United Kingdom

Tel: +44-7823-557-484 Email: eurosales@power.com

AMERICAS CENTRAL

333 Sheridan Road Winnetka, IL 60093 USA Tel: +1-847-721-6293 Email: usasales@power.com

CHINA (Shenzhen)

17/F, Hivac Building, No 2

Keji South 8th Road, Nanshan District Shenzhen, 518057 China

Tel: +86-755-8672-8689 Fax: +86-755-8672-8690 Email: <u>chinasales@power.com</u>

INDIA (Bangalore)

#1, 14th Main Road Vasanthangar

Bangalore, 560052 India Tel 1: +91-80-4113-8020 Tel 2: +91-80-4113-8028 Fax: +91-80-4113-8023 Email: indiasales@power.com

ITALY

Via Milanese 20

20099 Sesto San Giovanni (MI), Italy

Tel: +39-02-4550-8708 Email: <u>eurosales@power.com</u>

SINGAPORE

51 Newton Road #19-01/05 Goldhill Plaza Singapore, 308900 Tel 1: +65-6358-2160 Tel 2: +65-6358-4480 Fax: +65-6358-2015

Email: singaporesales@power.com