

2SI0400V2A3C-33 SCALE-iFlex[™] Driver Family

Isolated Master Control (IMC) for Driving Half-Bridge Power Modules up to 3300 V via an Optical Interface

Product Highlights

Highly Integrated, Compact Footprint

- Dual channel gate driver
- Optimized to be used with up to 4 Module Adapted Gate Driver 2SM0120D2xxC
- Optical interface
- + Flexible input supply voltage with 15 $V_{_{DC}}$ or wide-range input with 23.5 $V_{_{DC}}$ to 49.0 $V_{_{DC}}$
- Up to 6 W output power per channel at maximum ambient temperature
- -40 °C to 85 °C operating ambient temperature

Protection / Safety Features

- Short-circuit protection with Advanced Soft Shut Down (ASSD)
- Undervoltage lock-out (UVLO) protection for secondary-side (high-voltage)
- NTC temperature sensing with digital output signal (PWM-coded signal)
- DC-link voltage measurement with digital output signal (PWM-coded signal)
- Applied double sided conformal coating

Comprehensive Safety and Regulatory Compliance

- 100% production test for partial discharge and HIPOT test of transformer
- Creepage and clearance distances between primary and secondary sides meet IEC 61800-5-1 and EN 50124-1 reinforced isolation requirements
- RoHS compliant

Applications

- Wind and photovoltaic power
- Traction inverter
- Industrial drives
- Other industrial applications

Description

The SCALE-iFlexTM family consists of a remotely located Isolated Master Control (IMC) unit and up to four Module Adapted Gate Drivers (MAGs) mounted directly onto the power modules. A cable set connects the IMC and the MAGs. The IMC operates power modules that have a rated blocking voltage of up to 3300 V. The MAGs are matched to the specific IGBT and SiC power modules from a variety of suppliers.

The 2SI0400V2A3C-33 driver currently supports 2SM0120D2A1C, 2SM0120D2C1C and 2SM0120D2D1C MAGs, designed for LinPak/nHPD2, XHP^{M2}/LV100 and XHP^{M3} module packages respectively.

The SCALE-iFlex system enables easy paralleling of power modules providing high flexibility and system scalability.

Figure 1. Product Picture of 2SI0400V2A3C-33

XHP[™] is a registered trademark of Infineon Technologies AG

Pin Functional Description

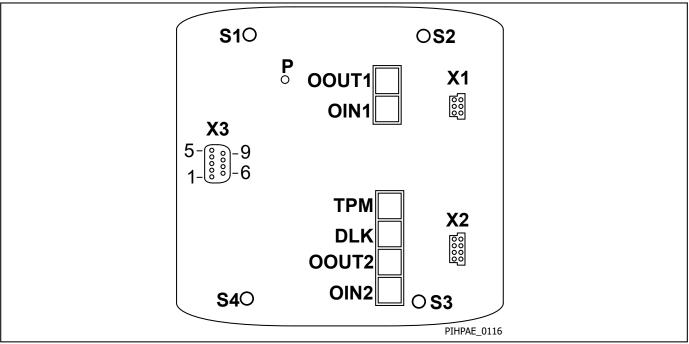


Figure 2. Pin Configuration.

Connector X1

IMC to MAG AMPHENOL FCI connector for gate driver channel 1.

Part number: 10075025-G02-06ALF.

Connector X2

IMC to MAG AMPHENOL FCI connector for gate driver channel 2.

Part number: 10075025-G02-08ALF.

Connector X3

IMC to superior controller (DELTRON Male D-Sub connector, 9 pins).

Part number: DTS09PY/2M86UNB6.

VCC (Pin 6, Pin 7)

These pins are the primary-side supply voltage connection for the wide range supply. Either VCC or V15 has to be used for supplying the SCALE-iFlex gate driver.

GND (Pins 1, 3, 5)

These pins are the connection for the primary-side ground potential. All primary-side signals refer to these pins.

V15 (Pin 4, Pin 9)

These pins are the primary-side supply voltage connection for supply voltage levels of 15V. Either VCC or V15 has to be used for supplying the SCALE-iFlex gate driver.

V15 Sense (Pin 8)

This pin can be used to sense V15 to adjust it to the right value (4-wire measurement) if V15 is used to supply the gate driver. If not used, it can be connected to Pins 4 and 9.

GND Sense (Pin 2)

This pin can be used to sense GND to adjust V15 to the right value (4-wire measurement) if V15 is used to supply the gate driver. If not used, it can be connected to Pins 1, 3 and 5.

Fiber Optic Interface

IMC to external controller (Fiber optic receivers and transmitters).

OIN1 (Receiver)

This fiber optic receiver is the command input for channel 1. Part number: HFBR-2532ETZ from Broadcom

OIN2 (Receiver)

This fiber optic receiver is the command input for channel 2. Part number: HFBR-2532ETZ from Broadcom

OOUT1 (Transmitter)

This fiber optic transmitter is the status output for channel 1. Part number: AFBR-1539Z from Broadcom

OOUT2 (Transmitter)

This fiber optic transmitter is the status output for channel 2. Part number: AFBR-1539Z from Broadcom

DLK

This is measurement output for the DC-link voltage. Part number: AFBR-1539Z from Broadcom

ТРМ

This is the measurement output for the NTC temperature sensing. Part number: AFBR-1539Z from Broadcom

Terminals S1 to S4

Dome positions for mechanical fixation of the IMC.

Optical Indicators

Ρ

White optical indicator for monitoring the supply voltage $V_{_{\rm V15}}.$ During absence of $V_{_{\rm V15}},$ the indicator is OFF.

Functional Description

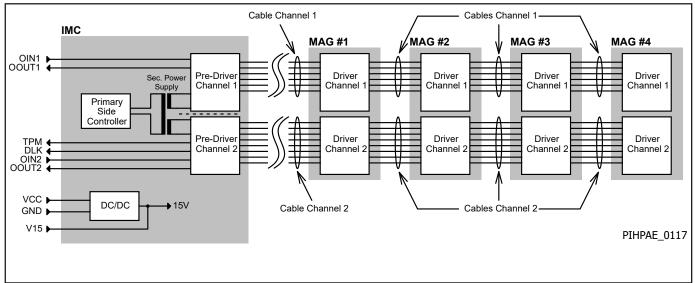


Figure 3. Functional Block Diagram.

The SCALE-iFlex is a dual channel gate driver, which consists of three parts according to Figure 3:

- Isolated Master Control (IMC)
- Module Adapted Gate Drivers (MAG)
- Cable set without ferrite beads (IMC connection to the first MAG)
- Cable set with ferrite beads (connection from MAG to MAG)

The IMC 2SI0400V2A3C-33 is independent of the actual target power module voltage class. It operates with various power modules up to a blocking voltage of 3300 V and provides reinforced isolation between primary and either secondary sides as well as basic isolation between both secondary sides.

In contrast, the MAGs 2SM0120D2A1C, 2SM0120D2C1C and 2SM0120D2D1C are particularly designed to operate with specific power modules. Their characteristics match the requirements of the individual power modules. For more details, refer to the related datasheet.

The interconnection between the external system controller and the IMC, from the IMC to the first MAG as well as between the MAGs is established with cables to allow a large degree of mechanical flexibility for the positioning of the devices.

The SCALE-iFlex gate driver provides the highest flexibility and is able to operate single or up to four power modules in parallel depending on actual application conditions and selected MAGs.

The operation of channel 1 and channel 2 of the gate driver is independent of each other. The insertion of dead-time, to avoid synchronous or overlapping switching of the driven power switches, has to be generated in the external system controller.

Note: Synchronous or overlapping switching of top and bottom switches within a half-bridge leg may damage or destroy the driven power switche(s) and, in conjunction as secondary failure, the attached MAG and/or IMC.

Power Supplies (Primary-Side X3)

The 2SI0400V2A3C-33 provides two independent power supply inputs. The first input VCC accepts a non-isolated wide input supply voltage range $V_{_{VCC'}}$ whereas the second input V15 accepts a non-isolated fix supply voltage $V_{_{V15}}$.

Only one supply input is allowed to be used at any time. In case the wide input supply range terminal VCC is used, a regulated voltage of typical 15 V is present at terminal V15. It represents the internal reference voltage for all primary-side functions. Additionally, it can be used as a 15 V output. Accordingly, an external load is allowed at V15 in case the VCC terminal is used as a supply and the external load together with the gate output loads does not exceed the power rating of the IMC.

It should be mentioned that when input supply V15 is used, the VCC terminal must be left floating.

Undervoltage Monitoring

The supply voltages are closely monitored on the secondary side of the IMC. In case of an UVLO on the secondary-side of the IMC or MAG, the fiber-optic signal of the respective channel is set to light off and the corresponding power semiconductor is turned off. During fault conditions, no gate signals are transmitted to the respective gate driver channel.

Fiber Optic Receivers OINx

The input signals of OIN1 and OIN2 are received by a "Versatile" fiber optic link receiver directly connected to the secondary sides of the gate driver. Both inputs have positive logic (light on implies turn-on) and are edge-triggered.

The gate driver signals are transferred from the OIN1 and OIN2 receivers to the gate of the attached MAG with a propagation delay of $t_{_{P(LH)}}$ for the turn-on and $t_{_{P(HL)}}$ for the turn-off commands.

Fiber Optic Transmitters OOUTx

The IMC provides the status feedback signals OOUT1 and OOUT2. All output signals are directly connected to the secondary sides of the gate drive by "Versatile" fiber optic link transmitters.

During normal operation (i.e. the driver is supplied with power at nominal voltage, and there is no fault on the corresponding channel), the status feedback is given by a "light on" at the optical link. A fault condition is signaled by a "light off".

The status outputs provide acknowledge information for every switching command by turning off the light for a duration of t_{ACK} after a delay of $t_{D(ACK)}$ referred to the edge of the received light signal on OINx. Figure 4 illustrates the timing of the fiber optic interface under normal operating conditions.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

IMC Output (Secondary-Side X1, X2)

The IMC provides per channel an output connector towards the first MAG. Details on recommended routing and general mounting are given in section "Mounting Instruction".

Short-Circuit Detection

In case of a detected short-circuit of the driven power module, the monitored semiconductor is switched off immediately and a fault signal is transmitted to the status output feedback OOUTx. The light goes OFF after a delay of $t_{\rm D(Fault)}$.

The fault feedback is automatically reset after the blocking time $t_{\rm BLK}$. The semiconductor is turned on again as soon as the next on-signal is applied to the corresponding fiber optic input OINx after the fault status has disappeared.

Figure 5 illustrates the timing of the fiber optic interface in a short-circuit condition.

DC-Link Voltage Measurement

The DC-link voltage is measured at the first MAG, i.e. the one which is directly connected to the IMC. The measured signal is forwarded to the IMC and can be accessed at DLK. The DC-link voltage signal at terminal DLK is pulse-width modulated with a fixed carrier frequency $f_{\rm DLK}$. To eliminate unintended noise, a filter is implemented in the read-out circuitry. The resulting filter time is given with $t_{\rm DLK}$. Additionally, a transmission delay of $t_{\rm DLK,dly}$ applies from DC-link voltage measurement to DLK.

NTC Temperature Measurement

Each MAG senses the NTC temperature of the attached power module. This signal is forwarded to the IMC and can be accessed at TPM. If more than one MAG is used, only the signal of the highest NTC temperature is considered. The temperature signal at terminal TPM is pulse-width modulated with a fixed carrier frequency $f_{\rm TPM}$. To eliminate unintended noise, a filter is implemented in the read-out circuitry. The resulting filter time is given with $t_{\rm TPM}$. Additionally, a transmission delay of $t_{\rm TPM,dv}$ applies from NTC temperature measurement to TPM.

Note: The NTC temperature does not represent the junction temperature of any of the semiconductor dies within the power module. Instead, it is a good indication of the baseplate temperature of the power module.

DLK and TPM Status Information

The DLK and TPM measurement outputs provide PWM signals with frequencies of $f_{_{\rm DLK}}$ and $f_{_{\rm TMP}}$ in normal operation. Additionally, they provide the following status:

- When NTC is not connected to the MAG, the TPM fiber optic output is set to static light-off state, while a PWM pattern is generated in the DLK fiber optic output.
- When an error is detected during the internal self-test of the driver, the DLK fiber optic output is set to static light-on state and the TPM fiber optic output is set to static light-off state.

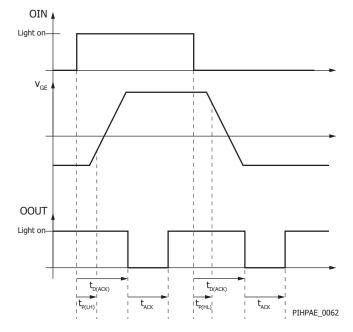


Figure 4. Fiber Optic Feedback in normal operation mode.

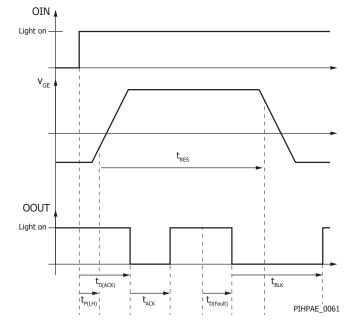


Figure 5. Fiber Optic Feedback in fault (short-circuit) operation mode.

Cables

SCALE-iFlex gate driver requires a set of cables to establish the electrical connection between the IMC and the first MAGs as well as between paralleled MAGs. The usage of cables allows for flexible positioning of the IMC within the application. Furthermore, it allows adapting to various pitches between paralleled power modules. For instance, forced air-cooled systems require a larger pitch than liquid-cooled systems due to the difference in heat spreading.

Several cable connections have to be established for proper system operation. These are:

- Cable from the system level controller to the primary-side IMC interface X3.
- Cables from the secondary-side IMC interface to the first MAG (one per channel).
- In case of paralleling of power modules, the cables from one MAG to another MAG (one per channel).

The cables between IMC and MAG and between MAGs are IMCCS-050-1 and MAGCS-015-1 respectively. For more details, refer to related datasheets of each cable.

It is important to note that these cables are at high voltage (secondaryside potential). The user is responsible for applying sufficient isolation to all cables.

All connections shall be assembled in non-powered status of the system. The interface cable to X3 connector is not part of the SCALEiFlex gate driver and has to be provided by the designer of the system. It is recommended to route the cable with minimum parasitic coupling from the controller to the IMC. Parasitic coupling in particular to any potential of the secondary-side of the IMC has to be avoided. Otherwise, increased common-mode currents may circulate, which may cause interferences with the command, measurement and/or status feedback signals. The cable from the IMC (connectors X1/X2) to the first MAG has to be isolated from surrounding potentials including the frame of the converter system. The minimum required distance to such potentials is 30 mm. A larger distance might be required depending on actual application conditions and applied isolation standards. The maximum length of the cable is 0.5 m. Beyond this length, degradation or timing variations of the command and/or status feedback signals may occur. The isolation can be established for instance with spacers or isolation sleeves.

Note: Partial discharge may occur within the cable and/or isolation sleeve depending on actual application conditions, which might lead to a degradation of the isolation. Proper routing of the cable and selection of the isolation sleeve are mandatory.

The cable connection from one MAG to another MAG should be kept as small as technically feasible. By this, typically no particular requirements concerning the isolation are given. In case the cable is in close proximity to other potentials (e.g. corresponding opposite channel, system frame), additional measures to ensure proper isolation distances have to be established. In any case, a minimum distance of 30 mm is required for such potentials. A larger distance might be required depending on actual application conditions and applied isolation standards. Using an isolation sleeve at reduced distances is not allowed due to capacitive coupling effects.

Note: Missing cable connections especially between MAGs will not lead to a failure signal at the IMC terminal X3 and will therefore not be detected by the gate driver.

Screw Terminals

The 2SI0400V2A3C-33 can be mounted within the system using screws at locations S1 to S4.

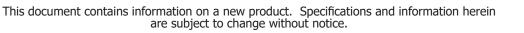
Absolute Maximum Ratings

Parameter	Symbol	Conditions $T_{A} = -40 \text{ °C to } 85 \text{ °C}$	Min	Max	Units
Absolute Maximum Ratings ¹					
Primary-Side Supply Voltage	V _{vcc}	VCC to GND	0	50.4	v
Frinary-Side Suppry Voltage	V _{v15}	V15 to GND	0	16	v
Primary-Side Supply Current	I _{VCC}	$V_{vcc} = 23.5 V$		780	mA
Output Power Per Channel ²	P _x			6	W
Switching Frequency	f _{sw}			25	kHz
Operating Voltage Primary-Side to	V _{OP}	Transient only		3300	v
Secondary-Side		Permanently applied		2500	
Test Voltage Primary-Side to Secondary-Side	$V_{\rm ISO(PS)}$	50 Hz, 60 s		9100	V
Test Voltage Secondary-Side to Secondary-Side	V _{ISO(SS)}	50 Hz, 60 s		6700	V
Common-Mode Transient Immunity	dv/dt			50	kV/μs
Storage Temperature ³	Τ _{st}		-40	50	°C
Operating Ambient Temperature	T _A		-40	85	°C
Surface Temperature ⁴	Т			125	°C
Relative Humidity	H _R	No condensation		93	%
Altitude of Operation ⁵	A _{OP}			2000	m

Recommended Operating Conditions

Parameter	Symbol	Conditions $T_{A} = -40 \text{ °C to } 85 \text{ °C}$	Min	Тур	Max	Units
Power Supply						
Primary-Side Supply Voltage	V _{vcc}	VCC to GND	23.5		49	v
	V _{v15}	V15 to GND	14.5	15	15.5	

2SI0400V2A3C-33


Characteristics

Parameter	Symbol		Conditions $T_{A} = 25 \text{ °C}$	Min	Тур	Мах	Units
Power Supply							
Supply Current	т	V _{vcc} = 36 V,	$\rm I_{_{VISO1}}$ = 6 mA, $\rm I_{_{VISO2}}$ = 18 mA		103		mA
	I _{vcc}	$V_{_{VCC}}$ = 36 V, $I_{_{VISO1}}$ = 210 mA, $I_{_{VISO2}}$ = 254 mA			424		mA
	I _{v15}	V _{V15} = 15 V,	$\rm I_{\rm _{VISO1}}$ = 6 mA, $\rm I_{\rm _{VISO2}}$ = 18 mA		214		mA
	¹ V15	$V_{_{V15}}$ = 15 V, $I_{_{VISO1}}$ = 210 mA, $I_{_{VISO2}}$ = 254 mA			957		mA
Power Supply	UVLO _{VISO}	Referenced to respective terminal E1 or E2 ⁶	Clear fault (resume operation)	11.6	12.6	13.6	
			Set fault (suspend operation)	11.0	12.0	13.0	V
			Hysteresis	0.35			
Monitoring Threshold (Secondary-Side)	UVLO _{COM}		Clear fault (resume operation)		-5.15		
			Set fault (suspend operation)		-4.85		
			Hysteresis		0.3		
Output Voltage (Secondary-Side)	V _{viso}	V _{vcc} = 36 V,	$\rm I_{\rm _{VISO1}}$ = 6 mA, $\rm I_{\rm _{VISO2}}$ = 18 mA		24.5		v
		V _{vcc} = 36 V, I	$_{\rm VISO1}$ = 210 mA, I $_{\rm VISO2}$ = 254 mA		23.8		
Coupling Capacitance	C _{IO}	Primary-side to secondary-side, total per channel			17		pF

NOTES:

- 1. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.
- 2. Actually achievable maximum power depends on several parameters and may be lower than the given value. It has to be validated in the final system. It is mainly limited by the maximum allowed surface temperature.
- 3. The storage temperature inside the original package or in case the coating material of coated products may touch external parts must be limited to the given value. Otherwise, it is limited to 85°C.
- 4. The component surface temperature on the PCB, which may strongly vary depending on the actual operating conditions, must be limited to the given value to ensure long-term reliability of the product.
- 5. Operation above this level requires a voltage derating to ensure long-term reliability of the product.
- 6. Local emitter terminals are not routed outside of the IMC.

POWEr integrations[™] www.power.com

2SI0400V2A3C-33

Characteristics (Cont.)

Parameter	Symbol	Conditions $T_{a} = 25 \text{ °C}$	Min Typ Max		Units	
Timing Characteristics	1			1	1	
Turn-On Delay	t _{P(LH)}	$V_{\rm TH(ON)(INEx)}$ to 50% of $V_{\rm GE(ON)'}$ no-load attached (from IMC input to MAG output)	180		ns	
Turn-Off Delay	t _{P(HL)}	$V_{_{TH(OFF)(INx)}}$ to 50% of $V_{_{GE(OFF)'}}$ no-load attached (from IMC input to MAG output)		160		ns
Turn-Off Delay After MAG Fault	t _{off(MAG)}	Delay from any MAG fault detection until turn-off of all other MAGs		11.5		μs
Duration of Acknowledge Pulse	t _{ACK}	Measured on host board with 1m FO cable	400	700	1050	ns
Delay of Acknowledgment Pulse	t _{D(ACK)}	Measured on host board with 1m FO cable		155		ns
Transmission Delay of Fault State	t _{D(Fault)}	From fault detection on MAG to host board with 1m FO cable		5.5		μs
Blocking Time	t _{BLK}	After fault feedback on OOUTx		10		μs
DC-Link Measurement	1				·	
DC-Link Carrier Frequency	f _{DLK}			10		kHz
DC-Link Duty Cycle ⁷		$V_{\text{DC-Link}} = 0 V$	5			
	DUT _{DLK}	$V_{DC-Link} \ge 2903 \text{ V} (3300 \text{ V MAG}) V_{DC-Link} \ge 1567 \text{ V} (1700 \text{ V MAG})$			95	%
DC-Link Filter Time	t _{DLK}	Time to reach 95% of measured value, including MAGs, excluding pure transmission delay		1.5		ms
DC-Link Transmission Delay	t _{DLK,dly}	Pure transmission delay		297		μs
DC-Link Refresh Rate	S _{DLK}			3367		Hz
DC-Link Measurement To	lerance	At full range	2		%	
DC-Link Transmission		5 % ≤ DUT _{DLK} ≤ 95 % (3300 V MAG)	$V_{\text{DC-Link}} = ((32.26 \text{ V}) / \%) \cdot (\text{DUT}_{\text{DLK}} - 5\%)$			_{LK} - 5%)
Characteristics ⁷		$5 \% \le DUT_{DLK} \le 95 \%$ (1700 V MAG)	V _{DC-Link} = ((17.41 V) / %) · (DUT _{DLK} - 5%)			
TPM Measurement						
TPM Carrier Frequency	f _{TPM}			10		kHz
TPM Duty Cycle ⁷	דעס	T _{TPM} ≤ 20 °C	5			%
	DUT	T _{TPM} ≥ 130 °C			95	-70
TPM Filter Time	t _{TPM}	Time to reach 95% of measured value, including MAGs, excluding pure transmission delay		15		ms

Characteristics (Cont.)

Parameter	Symbol	Conditions T _A = 25 °C	Min	Тур	Max	Units
TPM Transmission Delay		Pure transmission delay		13		ms
TPM Refresh Rate	S			125		Hz
TPM Measurement Tolera	nce	At 25°C, excluding TPM tolerance		3		К
Transmission characteris	tics ⁷	5 % \leq DUT _{TPM} \leq 95 %	T _{TPM} = ((1.2	222 °C) / %)	• (DUT _{TMP} -	5%) + 20°C
Electrical Isolation						
	V _{ISO(PS)}	Primary-side to secondary-side	9100			V _{RMS}
Test Voltage ⁸	$V_{\rm ISO(SS)}$	Secondary-side to secondary-side	6700			V _{RMS}
Partial Discharge	P _{D(PS)}	Primary-side to secondary-side	4125			V _{PK}
Extinction Voltage ⁹	$P_{D(SS)}$	Secondary-side to secondary-side	3670			V _{PK}
Creepage Distance	CPG _{P-S(PCB)}	Primary-side to secondary-side	50			mm
Creepage Distance	CPG _{S-S(PCB)}	Secondary-side to secondary-side	25			mm
Clearance Distance	CLR _{P-S}	Primary-side to secondary-side	23.8			mm
Clearance Distance	CLR _{s-s}	Secondary-side to secondary-side	14			mm
Mounting						
Mounting Holes	D _{HOLE}	Diameter of screw hole S1 – S4		4.3		mm
Bending	\mathbf{I}_{BEND}	According to IPC			0.75	%

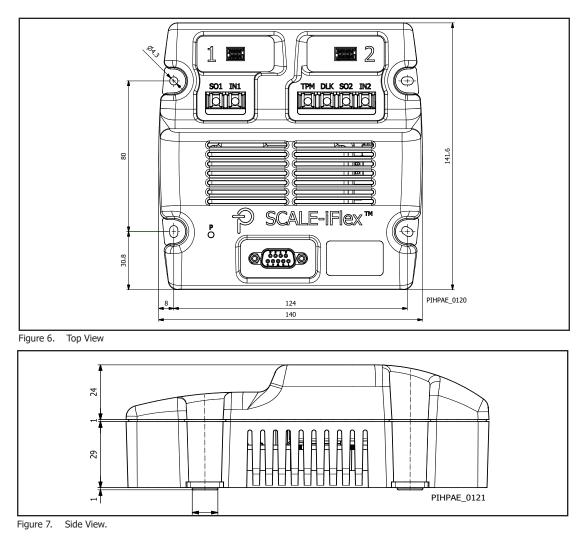
Mounting Instruction

The IMC can be mounted at a suitable location within the target application using the four screw holes S1 to S4. It is recommended to place the IMC out of any hot-spot area (e.g. heat sinks). Cable lengths between IMC and MAG of up to 0.5 m allow a high level of design freedom.

To avoid mechanical stress on the IMC during and after the mounting process, any bending or warping force imposed on the IMC must not lead to vaulting or twisting of the housing of 0.75 % per axis.

NOTES:

^{9.} Partial discharge measurement is performed on each transformer.


^{7.} Measured after inverting receiver HFBR-25x2ETZ.

^{8.} The transformer of every production sample has undergone 100% testing at the given value for 1s.

Reliability and EMC Qualifications Items

Test Item	Test Methods and Conditions			
Environmental Tests ¹¹				
Dry heat	IEC 60068-2-2, 85 °C, 240 h, DUT operated			
Cold	IEC 60068-2-1, -40 °C, 96 h, DUT operated			
Thermal cycling	IEC 60068-2-14, -40 °C and 85 °C, ramp: 5 °C/min, dwell: 30 min, DUT operated, 10 cycles			
Endurance Tests ¹¹				
High temperature operating lifetime	IEC 60068-2-2, 85 °C, test duration 1000 h, DUT operated			
Damp heat	IEC 60068-2-78, 85 °C / 85% R.H., 56d, DUT operated			
Thermal cycling	IEC 60068-2-14, -40 °C, 125 °C (5 K/min, 100 cycles, DUT unpowered)			
EMC Tests				
Burst immunity	IEC 61000-4-4, 5 kHz, \pm 4 kV (60s), 15 ms per package, 300 ms per period			
Conducted noise immunity	IEC 61000-4-6, frequency range 0.15 – 80 MHz and 27 – 68 MHz, log 1%, 80% AM (1 kHz), 20 V			
Radiated noise immunity	IEC 61000-4-3, 80 - 6000 MHz, log 1%; 10V/m (2 s), vertical and horizontal			
Radiated disturbances	EN 55016-2-1, frequency range 0.15 - 0.5 MHz, limit 99 dBμV QP and 0.5 - 30 MHz, limit 93 dBμV QP			
	IEC 61000-4-8, 1000 A/m (3 s), 3 axis			
	IEC 61000-4-8, 100 A/m (60 s), 3 axis			
	IEC 61000-4-9, 1000 A/m, (5 pulses), 3 axis			
Magnetic field immunity	IEC 61000-4-10, 100 kHz , 100 A/m (60s), 40/s			
	IEC 61000-4-10, 1 MHz , 100 A/m (60s), 400/s			
	IEC 61000-4-18, 100 kHz (60s), 40/s, 1 kV line to line, 2 kV lines to ground			
	IEC 61000-4-18, 1 MHz (60s), 40/s, 1 kV line to line, 2 kV lines to ground			
Mechanical Tests ¹¹				
Mechanical vibrations (sinusoidal)	IEC 60068-2-6, frequency range 200 - 500 Hz (± 3.3 mm displacement, 15 m/s ² , 10 sweep cycles), according to EN 60721-3-5, Cat. 5M2			
	IEC 60068-2-27, acceleration 300m/s ² , half sine, 3 axis, ±100 shocks per axis, according to EN 60721-3-5, Cat. 5M2			
Mechanical shock	IEC 61373, Class 1B, acceleration 30 m/s ² , duration 30 ms, vertical and transversal, half sine, ± 100 shocks per axis			
	IEC 61373, Class 1B, acceleration 50 m/s ² , duration 30 ms, longitudinal, half sine, ±100 shocks per axis			
Mechanical vibration (random)	IEC 61373, Class 1B, 5 Hz - 150 Hz, 1 h, 3 axis			
Mechanical vibrations (long-life)	IEC 61373, 5 Hz - 150 Hz, 5 h, 3 axis			

Product Dimensions

Conformal Coating

The electronic components in the gate driver 2SI0400V2A3C-33 are protected by a layer of acrylic conformal coating on both sides of the PCB with a typical thickness of 50 µm using ELPEGUARD SL 1307 FLZ /2 from Lackwerke Peters. This coating layer increases product reliability when exposed to contaminated environments.

Note: Standing water (e.g. condensate water) on top of the coating layer must be prevented. This water will diffuse through the layer over time. If allowed to remain, it will eventually form a thin film between the PCB surface and coating layer, which will cause leakage currents to increase. Such currents will interfere with the performance of the gate driver.

Transportation and Storage Conditions

For transportation and storage conditions refer to Power Integrations' Application Note AN-1501.

RoHS Statement

We hereby confirm that the product supplied does not contain any of the restricted substances according to Article 4 of the RoHS Directive 2011/65/EU in excess of the maximum concentration values tolerated by weight in any of their homogeneous materials.

Additionally, the product complies with RoHS Directive 2015/863/EU (known as RoHS 3) from 31 March 2015, which amends Annex II of Directive 2011/65/EU.

Revision	Notes	Date
А	Final Datasheet.	05/23

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at www.power.com/ip.htm.

Life Support Policy

POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:

- A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, PowiGaN, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2022, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

World Headquarters

5245 Hellyer Avenue San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Worldwide: +1-65-635-64480 Americas: +1-408-414-9621 e-mail: usasales@power.com

China (Shanghai)

Rm 2410, Charity Plaza, No. 88 North Caoxi Road Shanghai, PRC 200030 Phone: +86-21-6354-6323 e-mail: chinasales@power.com

China (Shenzhen)

17/F, Hivac Building, No. 2, Keji Nan Bangalore-560052 India 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 e-mail: chinasales@power.com

Germany (AC-DC/LED Sales) Einsteinring 24 85609 Dornach/Aschheim Germany Tel: +49-89-5527-39100 e-mail: eurosales@power.com

Germany (Gate Driver Sales) HellwegForum 3 59469 Ense Germany Tel: +49-2938-64-39990

e-mail: igbt-driver.sales@power.com India

#1, 14th Main Road Vasanthanagar Phone: +91-80-4113-8020 e-mail: indiasales@power.com

Italy

Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 e-mail: eurosales@power.com

Japan

Yusen Shin-Yokohama 1-chome Bldg. Taiwan 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 e-mail: japansales@power.com

Korea

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 e-mail: koreasales@power.com

Singapore

51 Newton Road #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 e-mail: singaporesales@power.com

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 e-mail: taiwansales@power.com

ПΚ

Building 5, Suite 21 The Westbrook Centre Milton Road Cambridge CB4 1YG Phone: +44 (0) 7823-557484 e-mail: eurosales@power.com