

Design Example Report

Title	22 W (48.6 W peak) 3 Output Power Supply Using TOP258MN
Specification	85 VAC – 265 VAC Input; 12 V, 40 - 800 mA (3 A peak, 50 ms); 8 V, 25 - 75 mA; 40 V, 30 - 300 mA Outputs 0 to +65°C
Application	Fresh Air Filter
Author	Applications Engineering Department
Document Number	DER-217
Date	February 11, 2010
Revision	1.0

Summary and Features

- 48.6 W peak power from a DIP package with no heatsink
- Highly energy efficient
 - Full load efficiency >80%
 - Peak load efficiency >83%
 - Low cost, low component count and small PCB footprint solution
 - Performance met without TOPSwitch[®]-HX heatsink
 - 132 kHz operation optimized core size and efficiency performance
 - Integrated Protection and Reliability Features
 - Line under-voltage lock out (UVLO)
 - Auto recovery output over current (OCP)
 - Accurate thermal shutdown with large hysteresis

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

> Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table of Contents

1 Introduction	3
2 Power Supply Specification	4
3 Schematic	5
4 Circuit Description	6
4.1 Input Stage and EMI Filtering	6
4.2 TOPSwitch-HX Primary	6
4.3 Output Rectification	7
4.4 Output Feedback	7
5 PCB Layout	8
6 Bill of Materials	9
7 Transformer Specification	11
7.1 Electrical Diagram	11
7.2 Electrical Specification	11
7.3 Materials	11
7.4 Transformer Build Diagram	12
7.5 Transformer Construction	12
8 Transformer Design Spreadsheet	13
9 Performance Data	17
9.1 Efficiency	17
9.2 Cross Regulation	19
9.2.1 Cross Regulation at 85 VAC	19
9.2.2 Cross Regulation at 265 VAC	19
10 Thermal Performance	20
11 Waveforms	21
11.1 Drain Voltage at 265 VAC (Peak Load)	21
11.2 Start-up Voltage Profile	21
11.3 Diode Peak Inverse Voltage	23
11.4 Output Ripple Measurements	25
11.4.1 Ripple Measurement Technique	25
11.4.1 Measurement Results	26
12 Conducted EMI	28
13 Revision History	29

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This document is an engineering report describing a power supply for a fresh-air filter application utilizing TOP258MN (TOPSwitch[®]-HX family). The power supply has three outputs as follows: 40 V, 0.3 A, 12 V, 0.8 A (3 A peak) and 8 V, 75 mA.

This document contains the power supply specification, schematic, bill of materials, transformer documentation and performance data.

Figure 1 – Populated Circuit Board Photograph.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Тур	Max	Units	Comment
Input		_				
Voltage	V _{IN}	85		265	VAC	2 wire
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load Input Power (265 VAC)				300	mW	
Output						
Output Voltage 1	V _{OUT1}		8		V	± 15%
Output Ripple Voltage 1	V _{RIPPLE1}			500	mV	20 MHz bandwidth
Output Current 1	I _{OUT1}	25	75	75	mA	
Output Voltage 2	V _{OUT2}		12		V	± 5%
Output Ripple Voltage 2	V _{RIPPLE2}			500	mV	20 MHz bandwidth
Output Current 2	I _{OUT2}	0.04	0.8	3	А	0.8 A in steady state, 3 A peak for 50 ms
Output Voltage 3	V _{OUT3}		40		V	± 10%
Output Ripple Voltage 3	V _{RIPPLE3}			500	mV	20 MHz bandwidth
Output Current 3	I _{OUT3}	0.03	0.3	0.3	А	
Total Output Power						
Continuous Output Power	Pout		22	48.6	W	
Efficiency						
Full Load	η		84		%	Measured at 25 °C
Environmental						
Conducted EMI		Meets CISPR22B / EN55022B				
Safety		Desigr	ned to mee Cla	t IEC950, ss II	UL1950	
Ambient Temperature	T _{AMB}	0		65	°C	Free convection, sea level

3 Schematic

Figure 2 – Schematic.

4 **Circuit Description**

This circuit is an isolated flyback converter for a fresh air filter using TOP258MN. It is designed to operate from 85 VAC to 265 VAC. The power supply has three outputs, 40 V, 0.3 A, 12 V, 0.8 A (3 A peak), and 8 V, 75 mA. It delivers a steady state power of 22 W and a peak power of 48.6 W for 50 msec. Figure 2 shows the schematic.

4.1 Input Stage and EMI Filtering

Fuse F1 protects the power supply against circuit faults such as short circuits (e.g. failure of the bridge rectifier). The bridge rectifier D2 is a full bridge rectifier circuit that rectifies the AC voltage into DC voltage. Capacitor C9 acts as filtering capacitor of the AC rectified waveform and also as the energy storage element of the power supply to provide a constant DC voltage.

The common-mode choke L1, X capacitor C12, and Y capacitor C2 are used for EMI filtering. Resistor R8 aids in discharging the X capacitor within one second after input AC is turned off to prevent shock hazard but is not required to meet safety as C12 is only 100 nF. Capacitor C10 reduces the PCB layout primary switching current loop size, reducing EMI.

The frequency jitter function of the TOPSwitch-HX family greatly reduces the size and complexity of the EMI filter components

4.2 TOPSwitch-HX Primary

This design uses two clamp networks, one to limit maximum drain voltage across the primary winding and a snubber to limit rate-of-rise of the drain voltage connected across DRAIN and SOURCE of U1.

The clamp circuit consists of D4, R3, VR1, and C5. During turn-off of the primary switching MOSFET, the energy stored in the leakage inductance of the primary winding of the transformer creates a voltage spike whose voltage level could exceed breakdown voltage (BV_{DSS}) of the MOSFET. During turn-off, when the drain voltage rises to a voltage above the DC bus plus the voltage across C5, D4 conducts and C5 is charged. The voltage across C5 is maintained to between 1.5 and 2 times the reflected output voltage (V_{OR}), determined by the value or R3. During a transient condition such as startup or a step change in load, the TVS (Transient Voltage Suppressor) VR1 prevents the voltage across the primary winding from rising above its rated value (200 V in this case). This allows the values of C5 and R3 to be optimized for normal operation, maximizing efficiency and reducing EMI while VR1 guarantees sufficient margin to BV_{DSS} during peak and over-load conditions.

The rate-of-rise snubber consists of D7, R10, and C14. During turn-off of the MOSFET, the leakage energy is dumped into the capacitor C13 through D6 and prevents the high drain dv/dt. The capacitor discharges through R10 at turn on. This snubber helps in

improving high frequency (radiated) EMI by decreasing the slope of the rising voltage on the drain of the MOSFET.

4.3 Output Rectification

The output uses a combination of Schottky and ultrafast diodes. Schottky barrier type are used on the lower voltage outputs (where the diode reverse voltage stress allows their use) to improve efficiency due to their lower forward voltage (V_F). RC snubbers (R1-C1, R9-C11, and R2-C4 on D1, D6, and D3 respectively) provide filtering of the voltage spike during turn-off of the diodes due to the reverse recovery characteristics and output leakage inductance which can cause significant EMI.

4.4 Output Feedback

The output is regulated using a TL431 circuit to maintain 5% regulation. The TL431 pulls current through the photodiode of U2 when the voltage on the reference pin set by the voltage divider (R6, R7 and R17) goes higher than 2.5 V. As the current through the opto-coupler increases current into the CONTROL pin of U1 also increases, reducing the duty cycle of the internal MOSFET and therefore maintaining output regulation. An additional soft-start circuit has also been implemented using C18, D8, and R11. Once the output voltage exceeds approximately 1.8 V (V_F of the LED within U2 + V_F of D8) C18 will begin to charge. As this charging current flows through U2 current will be also fed into the CONTROL pin of U1 (once the bias winding voltage is high enough to bias the optocoupler transistor). This effectively closes the control loop prior to the output reaching regulation and allows the output voltage rise time to be controlled during startup to prevent output overshoot. Resistor R11 discharges the soft-start capacitor during power supply shut down. Capacitor C13 and Resistor R14 are responsible for providing loop compensation.

5 PCB Layout

The transformer secondary ground pin (pin 9) was selected to be in the center of the bobbin to reduce the loop areas of the individual outputs to reduce leakage inductance, improving cross regulation and EMI generation. As the SOURCE pins of U1 were connected to the large area of copper on the PCB as these pins provide heatsinking of the device.

Figure 3 – PCB Layout.

6 Bill of Materials

Item	Qty	Ref Des	Description	Mfg Part Number	Manufacturer
1	1	C1	Capacitor, 470 pF, 1 kV, Disc Ceramic	562R10TST47	Vishay
2	1	C2	Capacitor, 2.2 nF, Ceramic, Y1, 250VAC	440LD22-R	Vishay
3	1	C3	Capacitor, 220 μ F, 63 V, Electrolytic, Low ESR	ELXZ630ELL221MJ25S	Nippon Chemi-Con
4	2	C4 C11	Capacitor, 470 pF, 100 V, Ceramic, X7R, 1206		Epcos
5	2	C5 C10	Capacitor, 2.2 nF, 1 kV, Disc Ceramic	NCD222K1KVY5FF	NIC Components
6	2	C6 C7	Capacitor, 680 $\mu\text{F},$ 25 V, Electrolytic, Very Low ESR	EKZE250ELL681MJ20S	Nippon Chemi-Con
7	1	C8	Capacitor, 220 µF, 16 V, Electrolytic	KME16VB221M8X11LL	Nippon Chemi-Con
8	1	C9	Capacitor, 100 µF, 400 V, Electrolytic	ECO-S2GP101CA	Panasonic
9	1	C12	Capacitor, 100 nF, 275VAC, Film, X2	F1772-410-2000	Vishay/Roederstein
10	2	C13 C15	Capacitor, 100 nF, 50 V, Ceramic, X7R, 0805	ECJ-2YB1H104K	Panasonic
11	1	C14	Capacitor, 100 pF, 1 kV, Disc Ceramic	ECC-D3A101JGE	Panasonic - ECG
12	1	C16 C18	Capacitor, 10 $\mu\text{F},$ 50 V, Electrolytic, Gen. Purpose	EKMG500ELL100ME11D	Nippon Chemi-Con
13	1	C17	Capacitor, 47 $\mu\text{F},$ 10 V, Electrolytic, Gen. Purpose	KME10VB22RM5X11LL	Nippon Chemi-Con
14	1	D1	Diode, 400 V, 1 A, Ultrafast Recovery, 35 ns, SMB	MURS140T3	On Semi
15	1	D2	Diode, 1000 V, 4 A, Bridge Rectifier	KBL10-E4/51	Vishay
16	1	D3	Diode, 100 V, 3 A, Schottky, SMC	30BQ100	International Rectifier
17	4	D4 D5 D7 D8	Diode, Ultra Fast, 800V, 1 A, SMA	US1K-13-F	Diodes, Inc
18	1	D6	Diode, 60 V, 1 A, Schottky, SMD, DO-213AB	SGL41-60/96	Vishay
19	1	F1	Fuse, 3.5 A, 250 V, Slow, 5 mm x 20 mm, Axial	23003.5	Littelfuse
20	1	L1	Inductor, 15 mH, 1.0 A, Common Mode Choke	ELF-18D431F	Panasonic
21	3	R1 R2 R9	Resistor, 47 $\Omega,$ 5%, 1/4 W, Metal Film, 1206	ERJ-8GEYJ470V	Panasonic
22	1	R3	Resistor, 100 k $\Omega,$ 5%, 1/4 W, Metal Film, 1206	ERJ-8GEYJ104V	Panasonic
23	1	R4	Resistor, 3.9 M Ω , 5%, 1/2 W, Carbon Film	CFR-50JB-3M9	Yageo
24	1	R5	Resistor, 2.2 $\Omega,$ 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ2R2V	Panasonic
25	1	R6	Resistor, 150 k Ω , 1%, 1/8 W, Metal Film, 0805	ERJ-6ENF1503V	Panasonic
26	1	R7	Resistor, 38.3 kΩ, 1%, 1/8 W, Metal Film, 0805	ERJ-6ENF3832V	Panasonic
27	1	R8	Resistor, 2 MΩ, 5%, 1/2 W, Carbon Film	CFR-50JB-2M0	Yageo
28	1	R10	Resistor, 22 k Ω , 5%, 1/4 W, Metal Film, 1206	ERJ-8GEYJ223V	Panasonic
29	1	R11	Resistor, 10 k Ω , 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ103V	Panasonic
30	1	R12	Resistor, 5.1 kΩ, 5%, 1/8 W, Metal Film, 0805	ERF-6ENF1503V	Panasonic
31	1	R13	Resistor, 2 k Ω , 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ202V	Panasonic
32	1	R14	Resistor, 3.3 kΩ, 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ332V	Panasonic
33	1	R15	Resistor, 6.8 Ω, 5%, 1/8 W, Metal Film, 0805	ERJ-6GEYJ6R8V	Panasonic
34	1	R16	Resistor, 10.5 k Ω , 1%, 1/8 W, Metal Film, 0805	ERJ-6ENF1052V	Panasonic
35	1	R17	Resistor, 4.87 k\Omega, 1%, 1/4 W, Metal Film, 1206	ERJ-8ENF4871V	Panasonic
36	1	RV1	MOV, 275 V, 75 J, 14 mm, RADIAL	V275LA20A	Littlefuse
37	1	T1	Bobbin, EER28L, Horizontal, 12 pins	YC2806	Ying Chin
38	1	U1	IC, TOPSwitch-HX, TOP258MN, SDIP-10	TOP258MN	Power Integrations
39	1	U2	IC, Optocoupler, 35 V, CTR 300-600%, 4-DIP	PC817X4	Sharp

40	1	U3	IC, 2.495 V Shunt Regulator IC, 2%, 0 to 70C	TL431CLPG	On Semiconductor
41	1	VR2	Diode, Zener, 18W, 500mW	1N5248B	Diodes, Inc
42	1	VR1	Diode, TVS, 200 V, 1500 W, SMC	SMCJ200A-13-F	Diodes, Inc

7 Transformer Specification

7.1 Electrical Diagram

Figure 4 – Transformer Electrical Diagram.

7.2 Electrical Specification

Electrical Strength	Strength 60 Hz 1 second, from pins 1-6 to pins 7-12.					
Primary Inductance	Pin 1 to pin 3, all other windings open, measured at 100 kHz, 1 VRMS.	590 μH, ±10%				
Resonant Frequency	All windings open.	850 kHz (Min.)				
Primary Leakage Inductance	Pins 1-3, all other pins shorted.	7 μH (Max.)				

7.3 Materials

ltem	Description
[1]	3 mm margin tape
[2]	3M barrier tape: polyester film
[3]	Core: 1 pair EER28L TDK PC44 or equivalent
[4]	Bobbin: 12 pin EER28L, horizontal, Ying Chin, YC2806
[5]	Magnet wire: #24 AWG double coated
[6]	Magnet wire: #26 AWG double coated
[7]	Magnet wire: #28 AWG double coated
[8]	Copper foil
[9]	Varnish

7.4 Transformer Build Diagram

Figure 5 – Transformer Build Diagram.

7.5 Transformer Construction

All windings are wound in the same direction.

Margin tape	Wind 3mm margin tape on both sides of the bobbin to match the height of the first half of the primary winding. Repeat for each subsequent layer					
Primary Winding	Start from left to right from pin 3. Wind 31 turns of #26 AWG wire on one layer. Return end back to start side and terminate on pin 2.					
Insulation	Use one layer of tape.					
Shield	Place one layer of copper foil for shield and terminate at pin 1.					
Insulation	Place two layers of tape.					
Secondary Winding	Start from left to right start 3 turns of 3x #24 AWG wire from pin 11 and started 5 turns of 3x #24 AWG wire from pin 7 and 8 in bifilar fashion. Terminate the first winding at pin 7 and 8 and the second winding at pin 9.					
Insulation	Place one layer of tape.					
Secondary Winding	Start from left to right from pin 12. Wind 17 turns of 3x #28 AWG magnet wire on one layer. Terminate at pin 11.					
Insulation	Place two layers of tape.					
Bias Winding	Start from left to right from pin 5. Wind 10 turns of 2x #28 AWG wire on one layer. Terminate on pin 6. Spread winding evenly in the bobbin.					
Insulation	Use one layer of tape.					
Primary Winding	Start from left to right from pin 2. Wind 32 turns of #26 AWG wire on one layer. Terminate at pin 1.					
Insulation	Place two layers of tape.					
Assembly	Assembly and secure core halves.					
Flux band	Place one turn of shorted copper foil touching the core and terminate to pin 1.					
Insulation	Place two layers of tape.					
Final Assembly	Dip varnish – DO NOT VACUUM IMPREGNATE.					

8 Transformer Design Spreadsheet

ACDC_TOPSwitchHX_0					TOD UV 021200, TODOwitch UV
21308; Rev.1.8; Copyright Power					IOP_HX_021308: IOPSWItch-HX Continuous/Discontinuous Elyback
Integrations 2008	INPUT	INFO	OUTPUT	UNIT	Transformer Design Spreadsheet
ENTER APPLICATION VA	RIABLES			•••••	
VACMIN	85			Volts	Minimum AC Input Voltage
VACMAX	265			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
VO	12.00			Volts	Output Voltage (main)
PO_AVG	22.00			Watts	Average Output Power
PO_PEAK	48.64		48.64	Watts	Peak Output Power
n	0.80			%/100	Efficiency Estimate
Z	0.50				Loss Allocation Factor
VB	15			Volts	Bias Voltage
tC	3.00			mSeconds	Bridge Rectifier Conduction Time Estimate
CIN	100.0		100	uFarads	Input Filter Capacitor
ENTER TOPSWITCH-HX	VARIABLES	1	1		
TOPSwitch-HX	TOP258MN			Universal / Peak	115 Doubled/230V
Chosen Device		TOP258MN	Power Out	35 W / 92 W	48W
КІ	0.72				External Ilimit reduction factor (KI=1.0 for default ILIMIT, KI <1.0 for lower ILIMIT)
ILIMITMIN_EXT			2.009	Amps	Use 1% resistor in setting external ILIMIT
ILIMITMAX_EXT			2.311	Amps	Use 1% resistor in setting external ILIMIT
Frequency (F)=132kHz, (H)=66kHz	Н		Н		Half frequency option is only available for P, G and M packages in addition to
					TOP259-TOP261YN devices. For full
					frequency operation choose E
					package or TOP254-TOP258YN
40			66000	Llortz	devices.
15			00000	Hertz	Choose between 132 kHz and 66 kHz
fSmin			59400	Hertz	TOPSwitch-HX Minimum Switching Frequency
fSmax			72600	Hertz	TOPSwitch-HX Maximum Switching Frequency
High Line Operating Mode			FF		Full Frequency, Jitter enabled
VOR	100.00			Volts	Reflected Output Voltage
VDS			10	Volts	TOPSwitch on-state Drain to Source Voltage
VD	0.60			Volts	Output Winding Diode Forward Voltage Drop
VDB	0.70			Volts	Bias Winding Diode Forward Voltage Drop
KP	0.60				Ripple to Peak Current Ratio (0.3 < KRP < 1.0 : 1.0< KDP<6.0)
PROTECTION FEATURES	6				· · · · · · · · · · · · · · · · · · ·
LINE SENSING					
VUV_STARTUP			95	Volts	Minimum DC Bus Voltage at which the power supply will start-up
VOV_SHUTDOWN			445	Volts	Typical DC Bus Voltage at which power supply will shut-down (Max)
RLS			4.0	M-ohms	Use two standard, 2 M-Ohm, 5% resistors in series for line sense
					functionality.
OUTPUT OVERVOLTAGE					
VZ			27	Volts	Zener Diode rated voltage for Output
57					Overvoltage shutdown protection
κz			5.1	k-ohms	Output OVP resistor. For latching

					shutdown use 20 ohm resistor instead		
OVERLOAD POWER LIMITING							
Overload Current Ratio			1.2		Enter the desired margin to current		
at VMAX					limit at VMAX. A value of 1.2 indicates		
					that the current limit should be 20%		
					higher than peak primary current at		
			5.00		VMAX		
Overload Current Ratio		Info	5.08		Your margin to current limit at low line		
			1.00	٨	Is high. Reduce Ki to 0.24 (il possible).		
			1.00	A	Peak primary Current at VMAX		
			9.79	A k ohmo	Current limit/Power Limiting resistor		
RPI			N/A	M-ohms	Resistor not required Use RIL resistor		
			11/73	W OIIII3	only		
ENTER TRANSFORMER	CORE/CONSTR	UCTION VARIA	BLES		0)		
Core Type	EER28L		EER28L		Core Type		
Core	-	EER28L		P/N:	PC40EER28L-Z		
Bobbin		EER28L		P/N:	BEER-28L-1112CPH		
		BOBBIN					
AE			0.814	cm^2	Core Effective Cross Sectional Area		
LE			7.55	cm	Core Effective Path Length		
AL			2520	nH/T^2	Ungapped Core Effective Inductance		
BW			21.8	mm	Bobbin Physical Winding Width		
M	3.00			mm	Safety Margin Width (Half the Primary		
					to Secondary Creepage Distance)		
L	2.00		-		Number of Primary Layers		
NS	8		8		Number of Secondary Turns		
DC INPUT VOLTAGE PAR	RAMETERS						
VMIN			77	Volts	Minimum DC Input Voltage		
VMAX		TERO	373	Volts	Maximum DC Input Voltage		
CURRENT WAVEFORM S		EIERS	0.00	[Maximum Duty Quala (aslaulated at		
DIMAX			0.60		PO_PEAK)		
IAVG			0.36	Amps	Average Primary Current (calculated at average output power)		
IP			1.88	Amps	Peak Primary Current (calculated at Peak output power)		
IR			0.51	Amps	Primary Ripple Current (calculated at		
IRMS			0.48	Amps	Primary RMS Current (calculated at		
			0.10	, inpo	average output power)		
TRANSFORMER PRIMAR	Y DESIGN PAR	AMETERS	I	1			
LP			589	uHenries	Primary Inductance		
LP Tolerance			10		Tolerance of Primary Inductance		
NP			63		Primary Winding Number of Turns		
NB			10	11/710	Bias Winding Number of Turns		
ALG			146	nH/1^2	Gapped Core Effective Inductance		
BM			2144	Gauss	(BM<3000)		
BP			2895	Gauss	Peak Flux Density (BP<4200) at		
					ILIMITMAX and LP_MAX. Note:		
					Recommended values for adapters		
					and external power supplies <=3600		
D 40			0.10	0	Gauss		
ВАС			643	Gauss	(0.5 X Peak to Peak)		
ur			1860		Relative Permeability of Ungapped Core		
LG			0.66	mm	Gap Length (Lg > 0.1 mm)		
BWE			31.6	mm	Effective Bobbin Width		
OD			0.50	mm	Maximum Primary Wire Diameter		
INS			0.07	mm	Estimated Total Insulation Thickness		
					(= 2 * film thickness)		
DIA			0.43	mm	Bare conductor diameter		

AWG			26	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
СМ			256	Cmils	Bare conductor effective area in
0144		147 -	500	0	
СМА		Warning	539	Cmils/Amp	III DECREASE CMA> (decrease L(primary layers),increase NS,smaller
Driver Owner (Description			0.74	A	
Primary Current Density			3.71	Amps/mm ²	III Info. Primary current density is low.
(J)					Can increase Primary current density.
					Reduce primary layers, or use smaller
					core
TRANSFORMER SECON	DARY DESIGN	PARAMETERS	(SINGLE OUT	FPUT EQUIVALE	ENT)
Lumped parameters					
ISP			14.94	Amps	Peak Secondary Current
ISRMS			3.09	Amns	Secondary RMS Current
			4.05	Ampo	Secondary Rock Output Current
IO_FLAR			4.00	Amps	Secondary Feak Output Current
10			1.83	Amps	Average Power Supply Output Current
IRIPPLE			2.49	Amps	Output Capacitor RMS Ripple Current
CMS			618	Cmils	Secondary Bare Conductor minimum
					circular mils
AWGS			22	AWG	Secondary Wire Gauge (Rounded up
				_	to next larger standard AWG value)
DIAS			0.65	mm	Secondary Minimum Bare Conductor
DIAO			0.00		Diameter
0.000			4.00		Casaadan Maximum Outsida
ODS			1.98	mm	Secondary Maximum Outside
					Diameter for Triple Insulated Wire
INSS			0.66	mm	Maximum Secondary Insulation Wall
					Thickness
VOLTAGE STRESS PAR	AMETERS				
VDRAIN			573	Volts	Maximum Drain Voltage Estimate
VBIOUN			010	Volto	(Includes Effect of Leakage
					Inductance)
DIV/C	-	-	50	Valta	Output Destifier Meximum Deals
PIV5			59	VOILS	
					Inverse voltage
PIVB			74	Volts	Bias Rectifier Maximum Peak Inverse
					Voltage
TRANSFORMER SECON	DARY DESIGN	PARAMETERS	(MULTIPLE O	UTPUTS)	
1st output					
VO1	12.00		12	Volts	Output Voltage
IO1 AVG	3.00		3.00	Amns	Average DC Output Current
	0.00		36.00	Watte	Average Output Power
FOT_AVG	0.70	-	30.00	Valla	Average Output Fower
VD1	0.70		0.7	VOItS	Output Diode Forward Voltage Drop
NS1			8.06	-	Output Winding Number of Turns
ISRMS1			5.053	Amps	Output Winding RMS Current
IRIPPLE1			4.07	Amps	Output Capacitor RMS Ripple Current
PIVS1			59	Volts	Output Rectifier Maximum Peak
					Inverse Voltage
CMS1			1011	Cmils	Output Winding Bare Conductor
omor				Onnio	minimum circular mils
AVA/C 81			20	A)M/C	Wire Course (Bounded up to povt
AWGST			20	AWG	whe Gauge (Rounded up to next
DUNG					larger standard AVVG value)
DIAS1			0.81	mm	Minimum Bare Conductor Diameter
ODS1			1.96	mm	Maximum Outside Diameter for Triple
					Insulated Wire
2nd output					
VO2	40.00			Volts	Output Voltage
IO2 AVG	0.30		1	Amps	Average DC Output Current
PO2 AVG		1	12.00	Watte	Average Output Power
VD2	0.60	<u> </u>	0.6		Output Diodo Forward Valtage Dres
	0.00	1	0.0	VOIIS	
1852			25.78	<u> </u>	Output winding Number of Turns
ISRMS2			0.505	Amps	Output Winding RMS Current
IRIPPLE2			0.41	Amps	Output Capacitor RMS Ripple Current
PIVS2			192	Volts	Output Rectifier Maximum Peak
					Inverse Voltage
CMS2	1	1	101	Cmils	Output Winding Bare Conductor
COL				Cirilio	minimum circular mile
	1	1	1	1	

AWGS2			30	AWG	Wire Gauge (Rounded up to next
					larger standard AvvG value)
DIAS2			0.26	mm	Minimum Bare Conductor Diameter
ODS2			0.61	mm	Maximum Outside Diameter for Triple
					Insulated Wire
3rd output					
VO3	7.50			Volts	Output Voltage
IO3_AVG	0.08			Amps	Average DC Output Current
PO3_AVG			0.60	Watts	Average Output Power
VD3	0.60		0.6	Volts	Output Diode Forward Voltage Drop
NS3			5.14		Output Winding Number of Turns
ISRMS3			0.135	Amps	Output Winding RMS Current
IRIPPLE3			0.11	Amps	Output Capacitor RMS Ripple Current
PIVS3			38	Volts	Output Rectifier Maximum Peak
					Inverse Voltage
CMS3			27	Cmils	Output Winding Bare Conductor
					minimum circular mils
AWGS3			35	AWG	Wire Gauge (Rounded up to next
					larger standard AWG value)
DIAS3			0.14	mm	Minimum Bare Conductor Diameter
ODS3			3.07	mm	Maximum Outside Diameter for Triple
					Insulated Wire
Total Continuous		Warning	48.6	Watts	!!! Warning. Total Continuous Output
Output Power		_			power does not match with the power
					entered under 'Applications Variables'
					section
Negative Output			N/A		If negative output exists enter Output
					number; eg: If VO2 is negative output,
					enter 2

Note: The CMA warning can be ignored as this indicates more copper area is available than needed for the secondary winding. High CMA (low current density) in a winding does not create a design problem.

The continuous power warning at the end of the design spreadsheet is the result of a rounding error 48.6 W vs. 48.64 W entered at top of spreadsheet

9 Performance Data

All measurements performed at room temperature, 60 Hz input frequency.

Figure 6 – Efficiency at Steady State Load 22.2 W vs. Input Voltage.

Figure 7 – Efficiency at Peak Load vs. Input Voltage.

9.2 Cross Regulation

9.2.1 Cross Regulation at 85 VAC

Minimum load: 8 V at 25 mA, 12 V at 40 mA, 40 V at 30 mA Full load: 8 V at 75 mA, 12 V at 800 mA, 40 V at 300 mA

Output Load			Measured Output Voltage		
8 V	12 V	40 V	8 V	12 V	40 V
Min. load	Min. load	Min. load	7.5	12.41	39.5
Min. load	Min. load	Full load	7.63	12.5	39.2
Min. load	Full load	Min. load	7.55	12.01	41
Min. load	Full load	Full load	7.73	12.32	39.9
Full load	Min. load	Min. load	7.28	12.41	39.5
Full load	Min. load	Full load	7.48	12.52	39.1
Full load	Full load	Min. load	7.41	12.02	40.9
Full load	Full load	Full load	7.63	12.31	39.7

9.2.2 Cross Regulation at 265 VAC

Minimum load: 8 V at 25 mA, 12 V at 40 mA, 40 V at 30 mA Full load: 8 V at 75 mA, 12 V at 800 mA, 40 V at 300 mA

Output Load			Measured Output Voltage		
8 V	12 V	40 V	8 V	12 V	40 V
Min. load	Min. load	Min. load	7.47	12.4	39.6
Min. load	Min. load	Full load	7.62	12.51	39.1
Min. load	Full load	Min. load	7.56	12.04	40.8
Min. load	Full load	Full load	7.22	12.32	39.9
Full load	Min. load	Min. load	7.22	12.4	39.6
Full load	Min. load	Full load	7.49	12.5	39.1
Full load	Full load	Min. load	7.43	12.04	40.9
Full load	Full load	Full load	7.63	12.31	39.9

10 Thermal Performance

Thermal tests were conducted at worst case condition of 85 VAC with 22 W Load.

Component	Measured at 25 °C	Calculated for 65 °C	
Bulk capacitor	35	75	
Drain snubber diode	45	85	
Output diode (8 V)	42.1	82.1	
Output diode (12 V)	68	108	
Output diode (40 V)	64.5	104.5	
Output capacitor (8 V)	37.9	77.9	
Output capacitor (12 V)	42.4	82.4	
Output capacitor (40 V)	38.7	78.7	
Transformer	53.9	93.9	
TOP258MN	51.3	91.3	
Bridge rectifier	40.6	80.6	
TVS	47.8	87.8	
dv/dt snubber diode	45.2	85.2	

11 Waveforms

11.1 Drain Voltage at 265 VAC (Peak Load)

11.2 Start-up Voltage Profile

Figure 9 – Output Voltage at 85 VAC, 8 V at 25 mA, 12 V at 40 mA, 40 V at 30 mA. Upper Trace: 40 V, 10 V / div., 250 ms / div. Middle Trace: 12 V, 5 V / div., 250 ms / div. Bottom Trace: 8 V, 5 V / div., 250 ms / div.

Figure 11 – Output Voltage at 85 VAC, Peak Load. Upper Trace: 40 V, 10 V / div., 250 ms / div. Middle Trace: 12 V, 5 V / div., 250 ms / div. Bottom Trace: 8 V, 5 V / div., 250 ms / div.

11.3 Diode Peak Inverse Voltage

Figure 13 – Output Diode PIV, 8 V Diode, 265 VAC, Peak Load 10 V / div., 1 μs / div.

Figure 14 – Output Diode PIV, 12 V Diode, 265 VAC, Peak Load 20 V / div., 1 μ s / div.

Figure 15 – Output Diode PIV, 40 V Diode, 265 VAC, Peak Load 50 V / div., 1 μs / div.

11.4 Output Ripple Measurements

11.4.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in the figures below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

Figure 16 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 17 – Oscilloscope Probe with Probe Master (www.probemaster.com) 4987A BNC Adapter. (Modified with wires for ripple measurement, and two parallel decoupling capacitors added)

Power Integrations

www.powerint.com

11.4.1 Measurement Results

Figure 18 – Output Voltage Ripple 8 V, 85 VAC at Peak Load. 100 mV / div., 5 µs / div.

Figure 20 – Output Voltage Ripple 12 V, 85 VAC at Peak Load. 100 mV /div., 5 μs / div.

Figure 19 – Output Voltage Ripple 8 V, 265 VAC at Peak Load. 100 mV / div., 10 μs / div.

Figure 21 – Output Voltage Ripple 12 V, 265 VAC at Peak Load. 100 mV / div., 5 μs / div.

Figure 22 – Output Voltage Ripple 40 V, 85 VAC at Peak Load.500 mV / div., 5 μs / div.

Figure 23 – Output Voltage Ripple 40 V, 265 VAC at Peak Load. 200 mV / div., 10 μs / div.

12 Conducted EMI

The upper and lower limits shown are quasi peak and the average limits as per EN55022 Class B. A resistive load was connected to DC output terminals. Measurements shown are peak measurements vs. QP and AVG limits.

13 Revision History

Date	Author	Revision	Description & changes	Reviewed
11-Feb-10	EC, SPM	1.0	Initial release	Apps & Mktg

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2010 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales*@*powerint.com*

CHINA (SHANGHAI)

Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 *e-mail: chinasales* @powerint.com

CHINA (SHENZHEN)

Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales* @powerint.com

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 *e-mail: eurosales @powerint.com*

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 *e-mail: indiasales@powerint.com*

ITALY

Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales*@*powerint.com* JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales@powerint.com*

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales @powerint.com*

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail: singaporesales@powerint.com*

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail: taiwansales@powerint.com*

UNITED KINGDOM

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales* @*powerint.com*

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

