Design Example Report

Title	35 W Output Automotive Power Supply for 800 V Systems Using InnoSwitch
Specification	30 VDC - 1000 VDC Input; $15.0 \mathrm{~V} / 2.33$ A Output
Application	Traction Inverter Gate and/or Emergency Power Supply
Author	Automotive Systems Engineering Department
Document Number	DER-948Q
Date	March 8, 2024
Revision	2.1

Summary and Features

- Ultra-compact design for $800 \mathrm{~V}_{\mathrm{DC}} \mathrm{BEV}$ automotive applications
- Low component count (only 66 components) ${ }^{1}$ design with single 1700 V power switch
- Wide range start-up and operating input from $30 \mathrm{~V}_{\mathrm{DC}}$ to $1000 \mathrm{~V}_{\mathrm{DC}}{ }^{2}$
- Reinforced 1000 V isolated transformer (IEC-60664-1 and IEC-60664-4 compliant)
- $\geq 85 \%$ full load efficiency across input voltage range ${ }^{3}$
- Secondary-side regulated output
- Ambient operating temperature from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Fully fault protected including output current limit and short-circuit protection
- Uses automotive qualified AEC-Q surface mount (SMD) components ${ }^{4}$
- Low profile, 15 mm height

[^0]
Table of Contents

1 Introduction 5
2 Design Specification 7
2.1 Electrical Specifications 7
2.2 Isolation Coordination 8
2.3 Environmental Specifications 8
3 Schematic 9
4 Circuit Description 10
4.1 Input Filter 10
4.2 High-Voltage Side Circuit 10
4.3 Low-Voltage Side Circuit 11
4.4 Diagnostic Circuit. 12
5 PCB Layout 13
6 Bill of Materials 15
7 Transformer Specification (T1) 17
7.1 Electrical Diagram 17
7.2 Electrical Specifications 17
7.3 Transformer Build Diagram 18
7.4 Material List 18
7.5 Winding Instructions 19
8 Transformer Design Spreadsheet 26
9 Performance data 29
9.1 No-Load Input Power 31
9.2 Efficiency 32
9.2.1 Line Efficiency 32
9.2.1.1 Line Efficiency at $85^{\circ} \mathrm{C}$ Ambient Temperature 32
9.2.1.2 Line Efficiency at $25^{\circ} \mathrm{C}$ Ambient Temperature 33
9.2.1.3 Line Efficiency at $-40^{\circ} \mathrm{C}$ Ambient Temperature 34
9.2.2 Load Efficiency 35
9.2.2.1 Load Efficiency at $85^{\circ} \mathrm{C}$ Ambient 35
9.2.2.2 Load Efficiency at $25^{\circ} \mathrm{C}$ Ambient 36
9.2.2.3 Load Efficiency at $-40^{\circ} \mathrm{C}$ Ambient 37
9.3 Output Line and Load Regulation 38
9.3.1 Load Regulation 38
9.3.1.1 Load Regulation at $85^{\circ} \mathrm{C}$ Ambient 38
9.3.1.2 Load Regulation at $25^{\circ} \mathrm{C}$ Ambient 39
9.3.1.3 Load Regulation at -40 ${ }^{\circ} \mathrm{C}$ Ambient 40
9.3.2 Line Regulation 41
9.3.2.1 Line Regulation at $85^{\circ} \mathrm{C}$ Ambient 41
9.3.2.2 Line Regulation at $25^{\circ} \mathrm{C}$ Ambient 42
9.3.2.3 Line Regulation at $-40^{\circ} \mathrm{C}$ Ambient. 43
10 Thermal Performance 44
10.1 Thermal Data at $85^{\circ} \mathrm{C}$ Ambient Temperature 44
10.2 Thermal Image Data at $25^{\circ} \mathrm{C}$ Ambient Temperature 46
11 Waveforms 49
11.1 Start-Up Waveforms 49
11.1.1 Output Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature 49
11.1.2 InnoSwitch3-AQ Drain Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature' 50
11.1.3 SR FET Drain Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature 51
11.1.4 Output Voltage and Current at $-40^{\circ} \mathrm{C}$ Ambient Temperature 52
11.1.5 InnoSwitch3-AQ Drain Voltage and Current at $-40^{\circ} \mathrm{C}$ Ambient Temperature 53
11.1.6 SR FET Drain Voltage and Current at $-40^{\circ} \mathrm{C}$ Ambient Temperature 54
11.2 Steady-State Waveforms 55
11.2.1 Switching Waveforms at $85{ }^{\circ} \mathrm{C}$ Ambient Temperature 55
11.2.1.1 Normal Operation Component Stress 55
11.2.1.2 InnoSwitch3-AQ Drain Voltage and Current at $85{ }^{\circ} \mathrm{C}$ Ambient Temperature 56
11.2.1.3 Synchronous Rectifier MOSFETs Drain Voltage and Current at $85{ }^{\circ} \mathrm{C}$ Ambient Temperature 57
11.2.2 Switching Waveforms at $25^{\circ} \mathrm{C}$ Ambient Temperature 58
11.2.2.1 Normal Operation Component Stress 58
11.2.2.2 InnoSwitch3-AQ Drain Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature 59
11.2.2.3 Synchronous Rectifier MOSFETs Drain Voltage and Current at $25{ }^{\circ} \mathrm{C}$ Ambient Temperature 60
11.2.2.4 Short-Circuit Response 61
11.3 Load Transient Response 62
11.3.1 Output Voltage Ripple with 0\% to 50\% Transient Load at $85^{\circ} \mathrm{C}$ Ambient Temperature 63
11.3.2 Output Voltage Ripple with 50% to 100% Transient Load at $85^{\circ} \mathrm{C}$ Ambient Temperature 64
11.4 Output Ripple Measurements 66
11.4.1 Ripple Measurement Technique 66
11.4.2 Output Voltage Ripple Waveforms 67
11.4.2.1 Output Voltage Ripple at $85{ }^{\circ} \mathrm{C}$ Ambient Constant Full Load 67
11.4.2.2 Output Voltage Ripple at $25^{\circ} \mathrm{C}$ Ambient Constant Full Load 69
11.4.2.3 Output Voltage Ripple at $-40^{\circ} \mathrm{C}$ Ambient Constant Full Load 71
11.4.3 Output Ripple vs. Load 73
11.4.3.1 Output Ripple at $85^{\circ} \mathrm{C}$ Ambient 73
11.4.3.2 Output Ripple at $25^{\circ} \mathrm{C}$ Ambient 74
11.4.3.3 Output Ripple at -40 ${ }^{\circ} \mathrm{C}$ Ambient 75
12 Diagnostic Circuit 76
13 Revision History 77

Disclaimer:

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein.

No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations, or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

1 Introduction

This engineering report describes a 35 W single output automotive power supply. It is intended for use in 800 V battery system electric vehicles supporting an ultra-wide input range of $30 \mathrm{~V}_{\mathrm{DC}}$ to 1000 V DC. This design uses the 1700 V rated INN3949CQ from the InnoSwitch3-AQ family of ICs in a flyback converter configuration.

The design provides reinforced isolation between the primary (high-voltage input) and secondary (output) sides by observing the creepage and clearance requirements as indicated in IEC-60664 parts 1 and 4.

The report contains the power supply specification, schematic diagram, printed circuit board (PCB) layout, bill of materials (BOM), magnetics specifications, and performance data.

Figure 1 - Populated Circuit Board, Entire Assembly.

Figure 2 - Populated Circuit Board, Top.

Figure 3 - Populated Circuit Board Photograph, Side.

The design can deliver the full 35 W output power at $85^{\circ} \mathrm{C}$ ambient temperature from 80 V_{DC} to 1000 V DC input voltage range. It is derated to 15 W with 60 V input and 7.5 W with 30 V input at $85^{\circ} \mathrm{C}$ ambient temperature. The 15 V output is typically configured to provide a redundant supply should the vehicle 12 V system supplying the traction inverter fail. This is a common requirement to meet functional safety by continuously allowing the inverter to provide active short-circuit, active discharge and reporting functions.
The InnoSwitch3-AQ IC maintains necessary regulation by directly sensing the output voltage and providing fast, accurate feedback to the primary-side via FluxLink ${ }^{\text {TM }}$. Secondary-side control also enables the use of synchronous rectification improving the overall efficiency compared to diode rectification thus saving cost and space by eliminating heat sinking.

2 Design Specification

The following tables below represent the minimum acceptable performance of the design. Actual performance is listed in the results section.

2.1 Electrical Specifications

Description	Symbol	Min.	Typ.	Max.	Units
Input Parameters					
Positive DC Link Input Voltage Referenced to HVOperating Switching Frequency	$\begin{aligned} & \hline \text { HV } \\ & \text { fsw } \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	800	$\begin{aligned} & 1000 \\ & 55.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{VDC} \\ & \mathrm{kHz} \end{aligned}$
Output Parameters					
Output Voltage Parameters Regulated Output Voltage Output Voltage Load and Line Regulation Ripple Voltage Measured on Board	Vout Vreg VRIppLe	$\begin{gathered} 14.25 \\ -5 \end{gathered}$	$\begin{aligned} & 15.0 \\ & 500 \end{aligned}$	$\begin{gathered} 15.75 \\ +5 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DC}} \\ \% \\ \mathrm{mV} \end{gathered}$
Output Current Parameters Output Current	Iout		2333		mA
Output Power Parameters Continuous Output Power at: 80 VDC - 1000 VDC Input 60 V DC Input 30 VDC Input	Pout			$\begin{gathered} 35 \\ 15 \\ 7.5 \end{gathered}$	W
Output Overshoot and Undershoot During Dynamic Load Condition	Δ Vout		5		\%

Table 1 - Electrical Specifications.

2.2 Isolation Coordination

Description	Symbol	Min.	Typ.	Max.	Units
Maximum Blocking Voltage of INN3949CQ	BVDSs			1700	V
System Voltage	Vsystem			1202	V
Working Voltage	Vmorking			1000	V
Pollution Degree	PD			2	
CTI for FR4	CTI	175		399	
Rated Impulse Voltage	Vimpulse			2.5	kV
Altitude Correction Factor for ha_{a}	Cha			1.59	
Technical Cleanliness Requirement				0.0	mm
Basic Clearance Distance Requirement	CLR ${ }_{\text {basic }}$	2.4			mm
Reinforced Clearance Distance Requirement	CLRreinforced	4.8			mm
Basic Creepage Distance Requirement for PCB	CPGbasic(PCb)	5.0			mm
Reinforced Creepage Distance Requirement for PCB	CPG ${ }_{\text {reinforced(PCB) }}$	10.0			mm
Isolation Test Voltage Between Primary and Secondary-Side for 60s	Viso	5000			VPK
Partial Discharge Test Voltage	Vpd_test	1803			$\mathrm{V}_{\text {PK }}$

Table 2 - Isolation Coordination ${ }^{5}$.

2.3 Environmental Specifications

Description	Symbol	Min.	Typ.	Max.	Units
Ambient Temperature	Ta	-40		85	${ }^{\circ} \mathrm{C}$
Altitude of Operation	ha			5500	m
Relative Humidity	Rh			85	$\%$

Table 3 - Environmental Specifications.

[^1]
3 Schematic

Figure 4 - DER-948Q Schematic.

4 Circuit Description

4.1 Input Filter

The automotive inverter environment is harsh, characterized by high dv/dt and di/dt from the switching action of the power modules. Large common mode currents are generated across the isolation barrier of the power supply which can interfere with the power supply operation, other inverter blocks and signal measurement integrity. The input common mode choke L1 together with the bypass capacitors C1 to C9 helps filter unwanted noise as prevention from affecting the overall performance of the design.

Common mode inductor L1 was selected such that the reference board would be able to withstand the Power Integrations' internal "Resistance to ripple on high voltage network" test. The test injects high frequency ripple on the high-voltage input to simulate the actual DC link capacitor ripple in a traction inverter. The final value of L1 will depend on the final design or application requirement. The higher the noise, the higher the inductance of L1 should be. However, consideration should be given between inductance value and the DC resistance (DCR) which has an impact on the overall efficiency of the design.

Bypass capacitors C 1 to C 9 were selected so as not to exceed 65% of their voltage rating as well as to maintain enough pad-to-pad distance to meet creepage and clearance requirements.

4.2 High-Voltage Side Circuit

The circuit design uses a flyback converter topology to provide an isolated low-voltage output from the high-voltage input. The flyback transformer T1 primary winding is connected across the high-voltage DC input and the drain terminal of the 1700 V SiC power MOSFET switch internal to INN3949CQ IC1.

An RCD type snubber circuit is placed across the primary side winding, to clip the drainsource voltage peaking of the internal SiC MOSFET switch during turn-off instance. Two super-fast (or better), surface mount type, AEC-Q qualified diodes D1 and D3 were placed in series to meet creepage and clearance requirements and ensure that the voltage across the diodes would not exceed 70% rating. Capacitors C 10 and C 11 catches the energy from the leakage inductance of transformer T1, the capacitor values were selected to minimize the voltage ripple across the snubber resistor network and maintain near constant power dissipation throughout the switching period. Resistors R4, R5, R7, R8, R9, R10, R11, R13, R14 and R15 dissipate the energy stored inside the snubber capacitors, the resistor values were selected such that their average voltage will not exceed 80% rating and maintain below 50% power dissipation. Cooling area for the snubber resistors were also considered to ensure operating temperature would be at acceptable level.

IC1 is self-starting, using an internal high-voltage current source to charge BPP capacitor C14. INN3949CQ is guaranteed to start-up at 30 V but will typically start below this level.

Transformer T1 auxiliary winding powers up the primary-side block during normal operation, this minimizes the power derived from the internal high-voltage current source to optimize the overall converter efficiency and lessens heating inside IC1. The output of the auxiliary winding is rectified and DC filtered using diode D2 and capacitors C12 and C13. The DC filtered voltage is fed to the BPP pin through resistor R12, where the resistor value is chosen to allow enough current for normal switching operation of IC1.

In this design, the input under and overvoltage features were disabled by shorting the V pin to SOURCE pin. This approach does not require the voltage sensing resistor chain for setting the under or overvoltage trigger of IC1 thus saving cost and space however, output voltage regulation at high load may fail at voltages $<80 \mathrm{VDC}$. ${ }^{6}$ If the output voltage fails to reach 90% regulation within $60 \mathrm{~ms}\left(\mathrm{t}_{\mathrm{SS}(\mathrm{RAMP})}+\mathrm{t}_{\mathrm{FB}(\mathrm{AR})}\right)$ during start-up, the auto-restart fault is triggered followed by a 2 s off time. This will result in a power supply hiccup where the output rises but fails to reach regulation.

If hiccup is not acceptable on the target design or application, then the undervoltage feature can be implemented. Please refer to the data sheet for the recommended undervoltage lockout circuit and design guide.

4.3 Low-Voltage Side Circuit

The secondary side of the INN3949CQ provides output voltage sensing, output current sensing and gate drive for the MOSFET providing synchronous rectification (SR). The voltage across the secondary winding of the transformer T 1 is rectified by the synchronous rectifier MOSFETs Q1 and Q2 then DC filtered by capacitors C18, C19, C21 and C23. High frequency ringing during switching is reduced by the RC type snubber formed by resistors R18, R19 and capacitor C16.

Switching of Q1 and Q2 is controlled by the secondary-side controller inside IC1. Control timing is based on the negative edge voltage transition sensed from the FWD pin via resistor R16. Capacitor C10 and R16 form a low pass filter that reduces voltage spike seen by the FWD pin and ensure that the maximum rating of 150 V will not be exceeded.

In continuous conduction mode operation, the primary-side power MOSFET is turned off just prior to the secondary-side controller commanding a new switching cycle from the primary. In discontinuous mode the SR MOSFET is turned off when the voltage drop across it falls below a certain threshold of approximately $\mathrm{V}_{\mathrm{SR}(\mathrm{TH})}$. Secondary-side control of the primary-side power MOSFET avoids any possibility of cross conduction of the two switches and ensures reliable synchronous rectifier operation.
The secondary side of the IC is self-powered from either the secondary winding forward voltage (thru R16 and the FWD pin) or by the output voltage (thru the VOUT pin). In both cases, energy is used to charge the decoupling capacitor C17 via an internal regulator.

[^2]Resistors R22 and R20 form a voltage divider network that senses the output voltage. The INN3949CQ IC has an FB pin internal reference of 1.265 V . Capacitor C20 provides decoupling from high frequency noise affecting power supply operation. Capacitor C22 and R21 form a feedforward network to speed up the feedback response time and lower the output ripple.

Output current is sensed by monitoring the voltage drop across parallel configured resistors R24 and R25. The resulting current measurement is filtered with decoupling capacitor C12 and monitored across the IS and SECONDARY GROUND pins. An internal current sense threshold of around 35 mV is used to reduce losses. Once the threshold is exceeded, the INN3949CQ IC1 will adjust the number of pulses to maintain fixed current limit. The IC will enter auto-restart (AR) operation when the output voltage feedback is below 90% and will recover when the load current is reduced below threshold.

4.4 Diagnostic Circuit

As the power supply unit will be used as an emergency backup, it is mainly kept unloaded but must be ready to be used anytime. A diagnostic circuit is provided as a way for the system to perform self-test to check if it is functional or not.

An additional interface for diagnostic checking was added, namely: PGOOD_DETECT and PSU_CHECK.

PSU_CHECK is an input signal (3.3 V to 5 V , maximum of 8 V) from the system's microcontroller, used to query if the unit is functional. When PSU_CHECK is HIGH, Q4 is turned ON via resistors R32 and R30, Q4 conducts and TL431 IC2's REF pin is pulled low. A maximum of 0.5 W is loaded to the output via the parallel resistors R26, R27, R28 and R31. When PSU_CHECK is LOW, IC2's REF pin is pulled HIGH to 15.0 V output voltage. R29 and C21 filter the signal to IC2's REF pin.

PGOOD_DETECT is an open collector output which must be pulled up externally (maximum of 36 V). When IC2's REF pin is pulled HIGH, PGOOD_DETECT is pulled low to approximately 2 V . A pull up resistor should be selected to provide at least 1 mA . When the IC2's REF pin is pulled LOW, IC2 does not conduct and PGOOD_DETECT is pulled up to the external voltage provided. In summary, a PGOOD_DETECT LOW signal indicates that the unit is functional and ready to use while a HIGH signal indicates that the unit is not serviceable.

5 PCB Layout

Layers:
Board Material:
Six (6) (typical for traction inverter control board)
Board Thickness:
FR4
Board Thickness: 1.6 mm
Copper Weight: 2 oz

Top Layer

Mid-Layer 1

Mid-Layer 3

Bottom Layer

Mid-Layer 2

Mid-Layer 4

Figure 5 - DER-948Q PCB Layout.

Figure 6 - DER-948Q PCB Assembly (Top).

6 Bill of Materials

Item	Qty	Designator	Description	MFR Part Number	Manufacturer
1	9	$\begin{aligned} & \text { C1, C2, C3, } \\ & \text { C4, C5, C6, } \\ & \text { C7, C8, C9 } \end{aligned}$	Multilayer Ceramic Capacitors MLCC - SMD/SMT 68n X7R 500 V 10\%1206 AEC-Q200	C1206C683KCRACAUTO	KEMET
2	2	C10, C11	Multilayer Ceramic Capacitors MLCC - SMD/SMT $6 \mathrm{n} 8 \mathrm{COG} 630 \mathrm{~V} 5 \% 1206$ AEC-Q200	CGA5H4C0G2J682J115AE	TDK
3	2	C12, C13	Multilayer Ceramic Capacitors MLCC - SMD/SMT 10u X7R 50 V 10\%1206 AEC-Q200	CGA5L1X7R1H106K160AE	TDK
4	1	C14	Multilayer Ceramic Capacitors MLCC - SMD/SMT 4 H 7 X7R 25 V 20\% 805 AEC-Q200	CGA4J1X7R1E475M125AC	TDK
5	1	C15	Multilayer Ceramic Capacitors MLCC - SMD/SMT 330p C0G 630 V 5\%1206 AEC-Q200	CGA5C4C0G2J331J060AA	TDK
6	1	C16	Multilayer Ceramic Capacitors MLCC - SMD/SMT 1500p COG 630 V 5\%1206 AEC-Q200	CGA5H4C0G2J152J115AA	TDK
7	1	C17	Multilayer Ceramic Capacitors MLCC - SMD/SMT 2u2 X7R 25V 10\%805 AEC-Q200	C0805C225K3RACAUTO	KEMET
8	1	C18	Multilayer Ceramic Capacitors MLCC - SMD/SMT 470n X7R 100 V 10\%1206 AEC-Q200	HMK316B7474KLHT	Taiyo Yuden
9	3	C19, C21, C23	Polymer Aluminum Capacitor 470u AL 25V $20 \% 10 \times 12.5 \mathrm{~mm}$ AEC-Q200	B40900B5477M000	TDK
10	2	C20, C24	Multilayer Ceramic Capacitors MLCC - SMD/SMT 330p X7R 16 V 10\%402 AEC-Q200	VJ0402Y331KLJAJ32	Vishay
11	2	C22, C27	Multilayer Ceramic Capacitors MLCC - SMD/SMT 10n X7R 25 V 10\%402 AEC-Q200	CGA2B2X7R1E103K050BA	TDK
12	1	C26	Multilayer Ceramic Capacitors MLCC - SMD/SMT 100n X7R 25 V 10\%603 AEC-Q200	CGA3E2X7R1E104K080AA	TDK
13	2	D1, D3	Diode Standard 1000 V 1.5A SMT DO-214AC AEC-Q101	NRVUS2MA	On Semi
14	1	D2	Diode Standard 200 V 225 mA SMT SOD-123 AEC-O101	BAS21GWX	Nexperia
15	1	D5	$\begin{aligned} & \text { Diode Zener } 15 \text { V } 365 \mathrm{~mW} \text { SMT SOD-123 AEC- } \\ & \text { Q101 } \end{aligned}$	PDZ15BGWJ	Nexperia
16	1	D6	Diode Standard 40 V 200mA SMT X1-DFN1006- 2 AEC-Q	SBR0240LPW-7B	Diodes, Inc.
17	1	IC1	CV/CC QR Flyback Switcher IC with Integrated 1700 V Switch and FluxLink Feedback for Automotive Applications	INN3949CQ	Power Integrations
18	1	IC2	Voltage References 2.495 VIN ADJ Shunt AEC- O100	TL431MFDT,215	Nexperia
19	1	J1	TERM BLOCK 1POS SIDE ENTRY SMD RED	SM99S01VBNN04G7	METZ CONNECT
20	1	J2	TERM BLOCK 1POS SIDE ENTRY SMD BLACK	SM99S01VBNN00G7	METZ CONNECT
21	1	J3	TERMI-BLOCK SMD MOUNT 180_4P_3.81	2383945-4	TE Connectivity
22	1	L1	Input Common Mode Choke	CD1479-AL	Coilcraft
23	1	Q1, Q2	```N-Channel MOSFET: 150 V 9.4 A PowerDI5060-```	DMT15H017LPS-137	Diodes, Inc.
24	1	Q3	N-Channel MOSFET: $30 \mathrm{~V} 400 \mathrm{~mA} \mathrm{SOT}-23$	NX3008NBK,215	Nexperia
25	2	R3, R6	Thick Film Resistors - SMD 1206 7R5 5\% 0.5W 200 V AEC-Q200	ESR18EZPJ7R5	ROHM Semi
26	10	$\begin{gathered} \hline \text { R4, R5, R7, } \\ \text { R8, R9, R10, } \\ \text { R11, R13, } \\ \text { R14, R15 } \\ \hline \end{gathered}$	Thick Film Resistors - SMD 1206 390K 5\% 0.5W 200 V AEC-Q200	ESR18EZPJ394	ROHM Semi
27	1	R12	Thick Film Resistors - SMD 0402 8K2 5\% 0.0625 W 50 V AEC-Q200	CR0402AJW-822GLF	Bourns
28	1	R16	Thick Film Resistors - SMD 0603 100R 5\% 0.1W AEC-Q200	RMCF0603JT100R	Stackpole

${ }^{7}$ DMT15H017LPS-13 is qualified for AEC-Q101 reliability test only but not fully qualified for all AEC-Q criteria.

29	1	R17	Thick Film Resistors - SMD 0805 4R7 5\% 0.125 W 150 V AEC-Q200	AC0805JR-074R7L	YAGEO
30	2	R18, R19	Thick Film Resistors - SMD 1206 12R 5\% 0.25 W 200 V AEC-Q200	AC1206JR-0712RL	YAGEO
31	1	R20	Thick Film Resistors - SMD 0402 9K1 1\% 0.1W 50 V AEC-Q200	ERJ-2RKF9101X	Panasonic
32	1	R21	Thick Film Resistors - SMD 0402 10K 5\% 0.1W 50 V AEC-Q200	ERJ-U02J103X	Panasonic
33	1	R22	Thick Film Resistors - SMD 0402 100K 1\% 0.0625 W AEC-Q200	RMCF0402FT100K	Stackpole
34	1	R23	Thick Film Resistors - SMD 1206 OR 1\% 0.25W 200 V AEC-Q200	AF1206JR-070RL	YAGEO
35	2	R24, R25	Thick Film Resistors - SMD 1206 OR027 1\% 0.25W AEC-Q200	WSL1206R0270FEA	Vishay
36	4	$\begin{aligned} & \hline \text { R26, R27, } \\ & \text { R28, R31 } \\ & \hline \end{aligned}$	Thick Film Resistors - SMD 1206 1K8 5\% 0.25W AEC-Q200	ERJ-8GEYJ182V	Panasonic
37	1	R29	Thick Film Resistors - SMD 0402 5K6 5\% 0.1W 50V AEC-Q200	ERJ-2GEJ562X	Panasonic
38	1	R30	$\begin{aligned} & \text { Thick Film Resistors - SMD } 0603 \text { 2K2 5\% 0.1W } \\ & \text { 75V AEC-Q200 } \end{aligned}$	AC0603JR-072K2L	YAGEO
39	1	R32	Thick Film Resistors - SMD 0402 4R7 5\% $0.063 W$ 50V AEC-Q200	AC0402JR-074R7L	YAGEO
40	1	T1	35 W Power Transformer	EFD25	Power Integrations
41	1	T1-Core	3C96 Ferrite Core	EQ30-3C96	Ferroxcube
42	1	T1-Core	3C96 Ferrite Core	PLT30/20/3-3C96	Ferroxcube
43	1	T1-Bobbin	Customized bobbin	MCT-EIQ3001 V4+6P	Power Integrations
44	1	Z1	Printed circuit board	PIA-00074-TL	Power Integrations

Table 4 - DER-948Q Bill of Materials ${ }^{8}$.
${ }^{8}$ All components are AEC-Q qualified except connectors, T1 and L1.

Power Integrations, Inc.
Tel: +14084149200 Fax: +1 4084149201
www.power.com

7 Transformer Specification (T1)

7.1 Electrical Diagram

Figure 7 - Transformer Electrical Diagram.

7.2 Electrical Specifications

Parameter	Conditions	Min.	Typ.	Max.	Unit
Power	Output power secondary-side.			35	W
Input voltage Vdc	Flyback topology.	30	800	1000	V
Switching frequency	Flyback topology.			55.5	kHz
Duty cycle	Flyback topology.	3.8		52.8	\%
Np:Ns			12.5		
Rdc	Primary side.		240		$\mathrm{m} \Omega$
Rdc	Secondary side.		2.8		$\mathrm{m} \Omega$
Coupling capacitance	Primary-side to secondary-side Measured at $1 \mathrm{~V}_{\mathrm{PK}-\mathrm{PK},} 100 \mathrm{kHz}$ frequency, with pins 1-3 shorted, pins 5-6 shorted and pins 8-9 shorted at $25^{\circ} \mathrm{C}$.			21.39	pF
Primary inductance	Measured at $1 \mathrm{~V}_{\text {PK-PK, }} 100 \mathrm{kHz}$ frequency, between pin 1-3, with all other windings open at $25^{\circ} \mathrm{C}$.		422.6		$\mu \mathrm{H}$
Part to part tolerance	Tolerance of Primary Inductance.	-3.0		3.0	\%
Primary leakage inductance	Measured between pin 1 to pin 3, with all other windings shorted.			6.5	$\mu \mathrm{H}$

Table 5 - Transformer (T1) Electrical Specifications.

7.3 Transformer Build Diagram

Figure 8 - Transformer Build Diagram.

7.4 Material List

Item	Description	Qty	UOM	Material	Manufacturer
[1]	Bobbin: MCT-EIQ3001 V4+6P	1	PC	Phenolic	MyCoilTech
[2]	Core: EQ30	1	PC	3C96 (or equivalent)	Ferroxcube
[3]	Core: PLT30/20/3	1	PC	$3 C 96$ (or equivalent)	Ferroxcube
[4]	WD1 (Pri): 0.35 mm FIW 4, Class F		mm		Elektrisola
[5]	WD2 (Bias): 0.1 mm FIW 4, Class F		mm	Copper Wire	Elektrisola
[6]	WD3a (Sec): T22A01P2XX-3, AWG \#22 PFA.003"		mm		Rubadue
[7]	Polyimide Amber: $0.125 \mathrm{in}(3.18 \mathrm{~mm})$		mm	315-CQT1-0.125	Chip Quik Inc.

Table 6 - Transformer (T1) Material List.

7.5 Winding Instructions

WD1: Primary		Position the bobbin on the mandrel such that the bobbin pins are on the right side. Refer to the arrow for the winding direction. Using . 35 mm FIW4, route the start lead from 1st pin(yellow) going to the 2nd lead guide(green) of the bobbin.
WD1: Primary		Wind the primary winding's first layer, 8 turns from right to left with tight tension. Spread the winding evenly along the bobbin's width.

		Wind the primary winding's second layer, 8 turns from left to right with tight tension. Spread the winding evenly along the bobbin's width. Temporarily route the primary winding to the 3rd lead guide and attach it to the bottom of the bobbin using tape.

Finishing

8 Transformer Design Spreadsheet

1	DCDC InnoSwitch3A Q_Flyback_060622; Rev.3.4; Copyright Power Integrations 2022	INPUT	INFO	OUTPUT	UNITS	InnoSwitch3-AQ Flyback Design Spreadsheet
2	APPLICATION VARIABLES					
3	VOUT	15.00		15.00	V	Output Voltage
4	OPERATING CONDITION 1					
5	VINDC1	1000.00		1000.00	V	Input DC voltage 1
6	IOUT1	2.333		2.333	A	Output current 1
7	POUT1			35.00	W	Output power 1
8	EFFICIENCY1			0.85		Converter efficiency for output 1
9	Z_FACTOR1			0.50		Z-factor for output 1
11	OPERATING CONDITION 2					
12	VINDC2	80.00		80.00	V	Input DC voltage 2
13	IOUT2	2.333		2.333	A	Output current 2
14	POUT2			35.00	W	Output power 2
15	EFFICIENCY2			0.85		Converter efficiency for output 2
16	Z_FACTOR2			0.50		Z-factor for output 2
69	PRIMARY CONTROLLER SELECTION					
70	ILIMIT_MODE	INCREASED		INCREASED		Device current limit mode
71	VDRAIN_BREAKDOWN			1700	V	Device breakdown voltage
72	DEVICE_GENERIC			INN39X9		Device selection
73	DEVICE_CODE	INN3949CQ		INN3949CQ		Device code
74	PDEVICE_MAX			70	W	Device maximum power capability
75	RDSON_25DEG			0.62	Ω	Primary switch on-time resistance at $25^{\circ} \mathrm{C}$
76	RDSON_125DEG			1.10	Ω	Primary switch on-time resistance at $125^{\circ} \mathrm{C}$
77	ILIMIT_MIN			1.981	A	Primary switch minimum current limit
78	ILIMIT_TYP			2.130	A	Primary switch typical current limit
79	ILIMIT_MAX			2.279	A	Primary switch maximum current limit
80	VDRAIN_ON_PRSW			0.53	V	Primary switch on-time voltage drop
81	VDRAIN_OFF_PRSW			1217.5	V	Peak drain voltage on the primary switch during turn-off
85	WORST CASE ELECTRICAL PARAMETERS					
86	FSWITCHING_MAX	55500		55500	Hz	Maximum switching frequency at full load and the valley of the minimum input AC voltage
87	VOR	187.5		187.5	V	Voltage reflected to the primary winding (corresponding to set-point 1) when the primary switch turns off
88	KP			2.107		Measure of continuous/discontinuous mode of operation
89	MODE_OPERATION			DCM		Mode of operation
90	DUTYCYCLE			0.528		Primary switch duty cycle
91	TIME_ON_MIN			0.75	us	Minimum primary switch on-time
92	TIME_ON_MAX			10.95	us	Maximum primary switch on-time
93	TIME_OFF			8.58	us	Primary switch off-time
94	LPRIMARY_MIN			410.0	uH	Minimum primary magnetizing inductance
95	LPRIMARY_TYP			422.6	uH	Typical primary magnetizing inductance
96	LPRIMARY_TOL	3.0		3.0	\%	Primary magnetizing inductance tolerance
97	LPRIMARY_MAX			435.3	uH	Maximum primary magnetizing inductance
99	PRIMARY CURRENT					
100	IAVG_PRIMARY			2.019	A	Primary switch average current
101	IPEAK_PRIMARY			2.019	A	Primary switch peak current
102	IPEDESTAL_PRIMARY			0.479	A	Primary switch current pedestal
103	IRIPPLE_PRIMARY			2.019	A	Primary switch ripple current
104	IRMS_PRIMARY			0.803	A	Primary switch RMS current

108	TRANSFORMER CONSTRUCTION PARAMETERS					
109	CORE SELECTION					
110	CORE	CUSTOM		CUSTOM		Core selection
111	CORE NAME	EIQ30-3C96		EIQ30-3C96		Core code
112	AE	108.0		108.0	$\mathrm{mm} \wedge 2$	Core cross sectional area
113	LE	36.2		36.2	mm	Core magnetic path length
114	AL	6000		6000	nH	Ungapped core effective inductance per turns squared
115	VE	3910		3910	mm^3	Core volume
116	BOBBIN NAME	$\begin{gathered} \text { MCT- } \\ \text { EIQ3001 } \\ \text { V4+6P } \end{gathered}$		$\begin{gathered} \text { MCT- } \\ \text { EIQ3001 } \\ \text { V4+6P } \end{gathered}$		Bobbin name
117	AW	22.3		22.3	$\mathrm{mm} \wedge 2$	Bobbin window area
118	BW	3.60		3.60	mm	Bobbin width
119	MARGIN			0.0	mm	Bobbin safety margin
121	PRIMARY WINDING					
122	NPRIMARY			25		Primary winding number of turns
123	BPEAK			3761	Gauss	Peak flux density
124	BMAX			3224	Gauss	Maximum flux density
125	BAC			1612	Gauss	AC flux density (0.5 x Peak to Peak)
126	ALG			676	nH	Typical gapped core effective inductance per turns squared
127	LG			0.178	mm	Core gap length
129	SECONDARY WINDING					
130	NSECONDARY	2		2		Secondary winding number of turns
132	BIAS WINDING					
133	NBIAS			2		Bias winding number of turns
137	PRIMARY COMPONENTS SELECTION					
138	LINE UNDERVOLTAGE/OVERVOLTAGE					
139	UVOV Type	UV Only		UV Only		Input Undervoltage/Overvoltage protection type
140	UNDERVOLTAGE PARAMETERS					
141	BROWN-IN REQUIRED	30.00		30.00	V	Required DC bus brown-in voltage threshold
142	UNDERVOLTAGE ZENER DIODE	BZM55C9V1		BZM55C9V1		Undervoltage protection zener diode
143	VZ			9.10	V	Zener diode reverse voltage
144	VR			6.80	V	Zener diode reverse voltage at the maximum reverse leakage current
145	ILKG			2.00	uA	Zener diode maximum reverse leakage current
146	BROWN-IN ACTUAL			$\begin{gathered} \hline 22.99- \\ 29.55 \end{gathered}$	V	Actual brown-in voltage range using standard resistors
147	BROWN-OUT ACTUAL			$\begin{gathered} \hline 19.76- \\ 26.44 \\ \hline \end{gathered}$	V	Actual brown-out voltage range using standard resistors
148	OVERVOLTAGE PARAMETERS					
149	OVERVOLTAGE REQUIRED		Info		V	For UV Only design, overvoltage feature is disabled
150	OVERVOLTAGE DIODE		Info			OV diode is used only for the overvoltage protection circuit
151	VF				V	OV diode forward voltage
152	VRRM				V	OV diode reverse voltage
153	PIV				V	OV diode peak inverse voltage
154	LINE_OVERVOLTAGE				V	For UV Only design, line overvoltage feature is disabled
155	DC BUS SENSE RESISTORS					
156	RLS_H			0.70	$\mathrm{M} \Omega$	Connect five 140 kOhm DC bus upper sense resistors to the V -pin for the required $\mathrm{UV} / \mathrm{OV}$ threshold
157	RLS_L			261	k Ω	DC bus lower sense resistor to the V-pin for the required UV/OV threshold
160	BIAS WINDING					

161	VBIAS		9.00	V	Rectified bias voltage
162	VF_BIAS	1.00	1.00	V	Bias winding diode forward drop
163	VREVERSE_BIASDIODE		89.00	V	Bias diode reverse voltage (not accounting parasitic voltage ring)
164	CBIAS		22	uF	Bias winding rectification capacitor
165	CBPP		4.70	uF	BPP pin capacitor
169	SECONDARY COMPONENTS SELECTION				
170	FEEDBACK COMPONENTS				
171	RFB_UPPER		100.00	k Ω	Upper feedback resistor (connected to the output terminal)
172	RFB_LOWER		9.31	k Ω	Lower feedback resistor
173	CFB_LOWER		330	pF	Lower feedback resistor decoupling capacitor
177	MULTIPLE OUTPUT PARAMETERS				
178	OUTPUT 1				
179	VOUT1		15.00	V	Output 1 voltage
180	IOUT1	2.333	2.333	A	Output 1 current
181	POUT1		35.00	W	Output 1 power
182	IRMS_SECONDARY1		6.536	A	Root mean squared value of the secondary current for output 1
183	IRIPPLE_CAP_OUTPUT1		6.106	A	Current ripple on the secondary waveform for output 1
184	NSECONDARY1		2		Number of turns for output 1
185	VREVERSE_RECTIFIER1		95.00	V	SRFET reverse voltage (not accounting parasitic voltage ring) for output 1
186	SRFET1	$\begin{gathered} \hline \text { DMT15H017L } \\ \text { PS-13 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { DMT15H01 } \\ \text { 7LPS-13 } \end{gathered}$		Secondary rectifier (Logic MOSFET) for output 1
187	VF_SRFET1		0.80	V	SRFET on-time drain voltage for output 1
188	VBREAKDOWN_SRFET1		150	V	SRFET breakdown voltage for output 1
189	RDSON_SRFET1		26	$\mathrm{m} \Omega$	SRFET on-time drain resistance at 25 deg C and VGS=4.4V for output 1
217	PO_TOTAL		35.00	W	Total power of all outputs

Table 7 - DER-948Q PIXIs Spreadsheet.

9 Performance data

Note: 1. Measurements were taken with the unit under test set-up inside a thermal chamber placed inside a High Voltage (HV) room.

Figure 9 - High Voltage Test Set-up.

Figure 10 - Test Set-up Inside the High Voltage Room.
2. Unit under test was placed under a box while inside the thermal chamber to eliminate the effect of any airflow.

Figure 11 - Unit Under Test Placed Under a Box to Eliminate the Effect of Airflow.
4. Unit under test was soaked for 5 minutes at full load condition with every change in the input voltage during the start of every test sequence. Also, for every loading condition, unit under test was soaked for at least 20 s before measurements were taken.

9.1 No-Load Input Power

Figure 12 shows the test set up diagram for no load input current acquisition. The voltage metering point is placed before the ammeter; this is done to prevent the voltage sensing bias current from affecting the input current measurement. The ammeter used was Tektronix DMM 4050 6-1/2 Digit Precision Multimeter.

Figure 12 - No-Load Input Power Measurement Diagram.
The unit was soaked for ten minutes before starting data averaging of fifty thousand samples over a period of one minute. Analog filtering is also enabled to improve measurement accuracy.

Figure 13 - No-Load Input Power vs. Input Voltage ($25^{\circ} \mathrm{C}$ Ambient).

9.2 Efficiency

9.2.1 Line Efficiency

Line efficiency describes how the change in input voltage affects the overall efficiency of the unit.
9.2.1.1 Line Efficiency at $85^{\circ} \mathrm{C}$ Ambient Temperature

Figure 14 - Full Load Efficiency vs. Input Line Voltage ($85^{\circ} \mathrm{C}$ Ambient). ${ }^{9}$

[^3]
9.2.1.2 Line Efficiency at $25^{\circ} \mathrm{C}$ Ambient Temperature

Figure 15 - Full Load Efficiency vs. Input Line Voltage ($25^{\circ} \mathrm{C}$ Ambient). ${ }^{10}$

[^4]
9.2.1.3 Line Efficiency at $-40^{\circ} \mathrm{C}$ Ambient Temperature

Figure 16 - Full Load Efficiency vs. Input Line Voltage ($-40^{\circ} \mathrm{C}$ Ambient). ${ }^{11}$

[^5]
9.2.2 Load Efficiency

Load efficiency describes how the change in output loading conditions affects the overall efficiency of the unit.

9.2.2.1 Load Efficiency at $85^{\circ} \mathrm{C}$ Ambient

Figure 17 - Efficiency vs. Load at Different Input Voltages ($85^{\circ} \mathrm{C}$ Ambient)..12

[^6]
9.2.2.2 Load Efficiency at $25^{\circ} \mathrm{C}$ Ambient

Figure 18 - Efficiency vs. Load at Different Input Voltages ($25^{\circ} \mathrm{C}$ Ambient). ${ }^{13}$

[^7]
9.2.2.3 Load Efficiency at $-40^{\circ} \mathrm{C}$ Ambient

Figure 19 - Efficiency vs. Load at Different Input Voltages (-40 ${ }^{\circ} \mathrm{C}$ Ambient)..14

[^8]
9.3 Output Line and Load Regulation

9.3.1 Load Regulation

Load Regulation describes how the change in output loading conditions affects the average output voltage of the unit.

9.3.1.1 Load Regulation at $85^{\circ} \mathrm{C}$ Ambient

Figure 20 - Output Regulation vs. Load at Different Input Voltages ($85^{\circ} \mathrm{C}$ Ambient). ${ }^{15}$

[^9]
9.3.1.2 Load Regulation at $25^{\circ} \mathrm{C}$ Ambient

Figure 21 - Output Regulation vs. Load at Different Input Voltages ($25^{\circ} \mathrm{C}$ Ambient). ${ }^{16}$

[^10]
9.3.1.3 Load Regulation at $-40^{\circ} \mathrm{C}$ Ambient

Figure 22 - Output Regulation vs. Load at Different Input Voltages (-40 ${ }^{\circ} \mathrm{C}$ Ambient)..17

[^11]
9.3.2 Line Regulation

Line Regulation describes how the change in input voltage conditions affects the average output voltage of the unit. The points in the following graphs are only taken from 100\% load conditions.
9.3.2.1 Line Regulation at $85^{\circ} \mathrm{C}$ Ambient

Figure 23 - Output Voltage vs Input Voltage at Full Load $\left(85^{\circ} \mathrm{C} \text { Ambient }\right)^{18}$

[^12]
9.3.2.2 Line Regulation at $25^{\circ} \mathrm{C}$ Ambient

Figure 24 - Output Regulation vs Input Voltage at Full Load (25 ${ }^{\circ} \mathrm{C}$ Ambient). ${ }^{19}$

[^13]
9.3.2.3 Line Regulation at $-40^{\circ} \mathrm{C}$ Ambient

Figure 25 - Output Regulation vs Input Voltage at Full Load (-40 ${ }^{\circ} \mathrm{C}$ Ambient). ${ }^{20}$

[^14]
10 Thermal Performance

10.1 Thermal Data at 85° C Ambient Temperature

The unit was placed inside a thermal chamber and soaked for at least 1 hour to allow component temperatures to settle. Figure 11 shows the set-up for thermal measurement.

Critical Components	Input Voltage (VDC)			
	$\mathbf{8 0}$	$\mathbf{4 0 0}$	$\mathbf{8 0 0}$	$\mathbf{1 0 0 0}$
Output Capacitor (C19)	98.66	100.02	102.38	104.53
Secondary Snubber Resistor (R18)	101.26	105.01	111.81	116.85
SR MOSFET (Q1)	101.95	103.79	107.28	110.55
SR MOSFET (Q2)	104.21	106	109.6	113.1
Transformer Winding	107.54	110.47	120.09	128.86
Transformer Core	104.43	108.76	119.07	126.65
InnoSwitch3-AQ	112.7	105	115.66	126.92
Primary Snubber (R3)	110.9	106.09	109.88	124.06
Primary Snubber (R15)	109.2	105.93	108.23	116.71
Common Mode Choke Core	105.14	105.15	107.37	113.98
Common Mode Choke Winding	102.14	102.24	103.81	109.24

Table 8 - Thermal Data at $85^{\circ} \mathrm{C}$ at Different Input Voltages.

Figure $\mathbf{2 6}$ - Component Temperatures at $85^{\circ} \mathrm{C}$ Ambient, 1000 V Input.

10.2 Thermal Image Data at 25 ºC Ambient Temperature

The following thermal scans are captured using a Fluke thermal imager after soaking for at least 1 hour in an enclosure to minimize the effect of air flow.

Critical Components	Input Voltage (VDC)			
	$\mathbf{8 0} \mathbf{~ V}$	$\mathbf{4 0 0}$ V	$\mathbf{8 0 0} \mathbf{V}$	$\mathbf{1 0 0 0}$ V
Output Capacitor (C19)	43.20	45.00	45.60	48.40
Secondary Snubber Resistor	45.50	50.20	58.40	62.00
SR MOSFET (Q1)	46.40	49.20	52.30	54.10
SR MOSFET (Q2)	48.80	51.50	54.10	55.70
Transformer	57.60	62.30	67.60	70.60
InnoSwitch3-AQ	60.80	59.40	70.90	81.40
Primary Snubber Diode	62.10	61.90	57.80	58.70
Primary Snubber (R3)	62.60	66.40	60.50	60.60
Primary Snubber (R15)	60.40	67.00	61.10	60.90
Common Mode Choke	51.20	73.80	62.70	62.40

Table 9 - Thermals Data at $25^{\circ} \mathrm{C}$ at Different Input Voltages.

Figure 27 - PCB Top Thermal Scans at 80 V Input.

Figure $\mathbf{2 8}$ - PCB Top Thermal Scans at 400 V Input.

Figure 29 - PCB Top Thermal Scans at 800 V Input.

Figure 30 - PCB Top Thermal Scans at 1000 V Input.

11 Waveforms

11.1 Start-Up Waveforms

The following measurements were taken by hot plugging-in the unit under test to a DC link capacitor fully charged ${ }^{21}$ with different test input voltages. Constant resistance load configuration was used for all start up tests.

11.1.1 Output Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature ${ }^{22,23}$

Figure 32 - Output Voltage and Current. $800 \mathrm{~V}_{\mathrm{DC}}, 6.43$ ohms Load.
CH1: Vin, $250 \mathrm{~V} /$ div.
CH3: Vout, $20 \mathrm{~V} / \mathrm{div}$.
CH4: Iout, 2 A / div.
Time: $200 \mathrm{~ms} / \mathrm{div}$.

Figure 31 - Output Voltage and Current.
$80 \mathrm{~V}_{\mathrm{DC}}, 6.43$ ohms Load.
CH1: VIN, $250 \mathrm{~V} / \mathrm{div}^{2}$.
CH3: Vout, $20 \mathrm{~V} / \mathrm{div}$.
CH4: Iout, 2 A / div.
Time: $200 \mathrm{~ms} / \mathrm{div}$.

Figure 33 - Output Voltage and Current. $1000 V_{D C}, 6.43$ ohms Load.
CH1: Vin, $250 \mathrm{~V} /$ div.
CH3: Vout, $20 \mathrm{~V} / \mathrm{div}$.
CH4: Iout, 2 A / div.
Time: $200 \mathrm{~ms} / \mathrm{div}$.

[^15]11.1.2 InnoSwitch3-AQ Drain Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature ${ }^{24,25}$

Figure 35 - INN3949CQ Drain Voltage and Current. $800 \mathrm{~V}_{\mathrm{DC}} 6.43$ ohms Load.
CH1: Vin, $500 \mathrm{~V} / \mathrm{div}$.
CH2: I_{D}, 2.5 A / div.
CH3: VDS, $500 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.

Figure 34 - INN3949CQ Drain Voltage and Current. $80 \mathrm{~V}_{\mathrm{DC}}, 6.43$ ohms Load.
CH1: Vin, $200 \mathrm{~V} / \mathrm{div}$.
CH2: Id, 2.5 A / div.
CH3: VDs, $500 \mathrm{~V} /$ div.
Time: $200 \mathrm{~ms} /$ div.

Figure 36 - INN3949CQ Drain Voltage and Current. $1000 \mathrm{~V}_{\mathrm{D}}, 6.43$ ohms Load.
CH1: Viv, $500 \mathrm{~V} / \mathrm{div}$.
CH2: ID, 2.5 A / div.
CH3: $\mathrm{V}_{\mathrm{DS}}, 500 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.

[^16]
11.1.3 SR FET Drain Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature ${ }^{26,27}$

Figure 38 - SR FET Drain Voltage and Current. $800 V_{D C}, 6.43$ ohms Load. $\mathrm{CH} 1: \mathrm{V}_{\mathrm{IN}}, 500 \mathrm{~V} / \mathrm{div}^{2}$
$\mathrm{CH} 3: \mathrm{V}_{\mathrm{DS}(\mathrm{SR}),} 50 \mathrm{~V} / \mathrm{div}$.
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{SR}),} 25 \mathrm{~A} / \mathrm{div}$.
Time: $200 \mathrm{~ms} / \mathrm{div}$.

Figure 37 - SR FET Drain Voltage and Current.
$80 \mathrm{~V}_{\mathrm{DC}}, 6.43$ ohms Load.
CH1: Vin, $250 \mathrm{~V} / \mathrm{div}$.
CH3: VDS(SR), $50 \mathrm{~V} / \mathrm{div}$.
CH2: $I_{\text {D(SR), }} 25$ A / div.
Time: $200 \mathrm{~ms} /$ div.

Figure 39 - SR FET Drain Voltage and Current.
$1000 \mathrm{~V}_{\mathrm{D}}, 6.43$ ohms Load.
CH1: VIN, $500 \mathrm{~V} / \mathrm{div}$.
CH3: VDS(SR), $50 \mathrm{~V} / \mathrm{div}$.
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{SR}),} 25 \mathrm{~A} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.

[^17]
11.1.4 Output Voltage and Current at -40 ${ }^{\circ} \mathrm{C}$ Ambient Temperature ${ }^{28,29}$

尾 $1 / 4$ in

Figure 41 - Output Voltage and Current. $800 \mathrm{~V}_{\mathrm{DC}}$, 2.333 A Load. CH1: Vin, $250 \mathrm{~V} / \mathrm{div}^{2}$.
CH3: Vout, $20 \mathrm{~V} / \mathrm{div}$. CH4: Iout, 2 A / div.
Time: $200 \mathrm{~ms} / \mathrm{div}$.

Figure 40 - Output Voltage and Current. 80 VDC, 2.333 A Load CH1: Vin, $250 \mathrm{~V} / \mathrm{div}$. CH3: Vout, $20 \mathrm{~V} / \mathrm{div}$. CH4: Iout, 2 A / div. Time: $200 \mathrm{~ms} / \mathrm{div}$.

Figure 42 - Output Voltage and Current. $1000 \mathrm{~V}_{\mathrm{D}}$, 2.333 A Load.
CH1: Vin, $250 \mathrm{~V} / \mathrm{div}$.
CH3: Vout, $20 \mathrm{~V} / \mathrm{div}$.
CH4: Iout, 2 A / div.
Time: 200 ms / div.

[^18]
11.1.5 InnoSwitch3-AQ Drain Voltage and Current at -40 ${ }^{\circ} \mathrm{C}$ Ambient Temperature ${ }^{30,31}$

Figure 44 - INN3949CQ Drain Voltage and Current. 800 VDC, 2.333 A Load.
CH1: VIN, $500 \mathrm{~V} / \mathrm{div}$.
CH2: Id, 2.5 A / div.
CH3: VDS, $500 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.

Figure 43 - INN3949CQ Drain Voltage and Current. $80 \mathrm{~V}_{\mathrm{DC}}, 2.333$ A Load.
CH1: Vin, $200 \mathrm{~V} / \mathrm{div}$.
CH2: Id, 2.5 A / div.
CH3: VDs, $500 \mathrm{~V} /$ div.
Time: $200 \mathrm{~ms} /$ div.

Figure 45 - INN3949CQ Drain Voltage and Current. $1000 \mathrm{~V}_{\mathrm{D}}, 2.333$ A Load.
CH1: VIN, $500 \mathrm{~V} / \mathrm{div}$.
CH2: ID, 2.5 A / div.
CH3: $\mathrm{V}_{\mathrm{DS}}, 500 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.

[^19]
11.1.6 SR FET Drain Voltage and Current at $-40^{\circ} \mathrm{C}$ Ambient Temperature ${ }^{32,33}$

Figure 47 - SR FET Drain Voltage and Current. $800 \mathrm{~V}_{\mathrm{DC}}, 2.333 \mathrm{~A}$ ohms Load. CH1: VIN, $500 \mathrm{~V} / \mathrm{div}^{2}$
CH3: VDS(SR), $50 \mathrm{~V} / \mathrm{div}$.
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{SR}),} 25 \mathrm{~A} / \mathrm{div}$.
Time: $200 \mathrm{~ms} / \mathrm{div}$.

Figure 46 - SR FET Drain Voltage and Current. 80 V $\mathrm{DC}, 2.333 \mathrm{~A}$ Load.
CH1: Vin, $100 \mathrm{~V} / \mathrm{div}$.
$\mathrm{CH} 3: \mathrm{V}$ DS(SR), $50 \mathrm{~V} / \mathrm{div}$.
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{SR}),} 25 \mathrm{~A} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.

Figure 48 - SR FET Drain Voltage and Current.
$1000 \mathrm{~V}_{\mathrm{D}}, 2.333$ A Load.
CH1: Vin, $500 \mathrm{~V} / \mathrm{div}$.
CH3: VDS(SR), $50 \mathrm{~V} / \mathrm{div}$.
CH2: $I_{\text {D(SR) }), ~} 25 \mathrm{~A} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.

[^20]
11.2 Steady-State Waveforms

11.2.1 Switching Waveforms at $85^{\circ} \mathrm{C}$ Ambient Temperature

11.2.1.1 Normal Operation Component Stress

	Steady-State Switching Waveforms $85^{\circ} \mathrm{C}$ Ambient, Full Load					
Input	INN3949CQ			SR MOSFETs		
$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \\ & \mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{D}} \\ (\mathbf{A}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { VDs } \\ & \text { (V) } \end{aligned}$	Vstress (\%)	$\begin{gathered} I_{D} \\ (A)^{34} \\ \hline \end{gathered}$	$\begin{gathered} V_{D S} \\ (\mathbf{V})^{35} \\ \hline \end{gathered}$	Vstress (\%)
80	1.613	511.0	30.06	28.0	27.1	16.27
400	2.088	820.0	48.24	28.19	75.1	48.67
800	2.306	1225.0	72.06	29.0	113	76.00
1000	2.663	1461.0	85.94	30.0	131	88.33

Table 10 - Summary of Critical Component Voltage Stresses at $85^{\circ} \mathrm{C}$ Ambient Temperature.

[^21]
11.2.1.2 InnoSwitch3-AQ Drain Voltage and Current at $85^{\circ} \mathrm{C}$ Ambient Temperature

Figure 49 - InnoSwitch3-AQ Drain Voltage and Current. $80 \mathrm{~V}_{\mathrm{DC}}$, 2.333 A Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: VDS(IC1), $500 \mathrm{~V} /$ div.
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{IC1}),} 2.5 \mathrm{~A} / \mathrm{div}$.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 51 - InnoSwitch3-AQ Drain Voltage and Current. 800 VDC, 2.333 A Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: VD(IC1), $500 \mathrm{~V} / \mathrm{div}^{2}$
CH2: $\mathrm{I}_{\text {(IC1), }}$ 2.5 A / div.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 50 - InnoSwitch3-AQ Drain Voltage and Current. $400 \mathrm{VDC}, 2.333$ A Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: $\mathrm{V}_{\mathrm{DS}(\mathrm{IC1} 1), 5} 500 \mathrm{~V} / \mathrm{div}$.
CH2: Id(IC1), 2.5 A / div.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 52 - InnoSwitch3-AQ Drain Voltage and Current. $1000 \mathrm{~V}_{\mathrm{DC}}, 2.333$ A Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: VD(IC1), $500 \mathrm{~V} / \mathrm{div}^{2}$
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{IC1}),}$ 2.5 A / div.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

11.2.1.3 Synchronous Rectifier MOSFETs Drain Voltage and Current at $85{ }^{\circ} \mathrm{C}$ Ambient Temperature

Figure 53 - Synch. Rectifier Drain Voltage and Current. 80 VDC, 2.333 A Load, $85^{\circ} \mathrm{C}$ Ambient.
CH3: VDS(SR), $50 \mathrm{~V} /$ div.
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{SR}),} 25 \mathrm{~A} / \mathrm{div}$.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 55 - Synch. Rectifier Drain Voltage and Current. $800 \mathrm{~V}_{\mathrm{Dc}}$ 2.333 A Load, $85^{\circ} \mathrm{C}$ Ambient.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{DS}(\mathrm{SR}),} 50 \mathrm{~V} / \mathrm{div}$.
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{SR}),} 25 \mathrm{~A} / \mathrm{div}$.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 54 - Synch. Rectifier Drain Voltage and Current. 400 VDC, 2.333 A Load, $85{ }^{\circ} \mathrm{C}$ Ambient. CH3: VDS(SR), $50 \mathrm{~V} /$ div. CH2: Id(SR), $25 \mathrm{~A} / \mathrm{div}$. Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 56 - Synch. Rectifier Drain Voltage and Current. $1000 \mathrm{~V}_{\mathrm{Dc}}$, 2.333 A Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: VDS(SR), $50 \mathrm{~V} /$ div.
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{SR}),} 25 \mathrm{~A} / \mathrm{div}$.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

11.2.2 Switching Waveforms at $25^{\circ} \mathrm{C}$ Ambient Temperature

11.2.2.1 Normal Operation Component Stress

	Steady-State Switching Waveforms $25^{\circ} \mathrm{C}$ Ambient, Full Load					
Input	INN3949CQ			SR MOSFETs		
$\begin{aligned} & \mathbf{V}_{\text {IN }} \\ & (\mathrm{V}) \end{aligned}$	$\begin{gathered} \mathbf{I D}_{\mathrm{D}} \\ (\mathbf{A}) \\ \hline \end{gathered}$	Vds (V)	Vstress (\%)	$\begin{gathered} \mathrm{ID}_{\mathrm{D}} \\ (\mathrm{~A})^{36} \end{gathered}$	$\begin{gathered} \mathrm{VDS}_{\mathrm{DS}} \\ (\mathrm{~V})^{37} \end{gathered}$	Vstress (\%)
80	1.700	535.0	31.47	28.94	25.0	16.67
400	2.413	848.0	49.88	28.25	71.5	47.67
800	2.775	1188.0	69.88	28.38	112.8	75.20
1000	2.900	1406.0	82.71	28.69	132.0	88.00

Table 11 - Summary of Critical Component Voltage Stresses at $25^{\circ} \mathrm{C}$ Ambient Temperature.

[^22]
11.2.2.2 InnoSwitch3-AQ Drain Voltage and Current at $25^{\circ} \mathrm{C}$ Ambient Temperature

Figure 57 - InnoSwitch3-AQ Drain Voltage and Current. $80 V_{D C}$, 2.333 A Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: VDS(IC1), $500 \mathrm{~V} /$ div.
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{IC1}),} 2.5 \mathrm{~A} / \mathrm{div}$.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 59 - InnoSwitch3-AQ Drain Voltage and Current. $800 \mathrm{~V}_{\mathrm{D}}$, 2.333 A Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: VD(IC1), $500 \mathrm{~V} / \mathrm{div}$.
CH2: $\mathrm{I}_{\text {(IIC1), }}$ 2.5 A / div.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 58 - InnoSwitch3-AQ Drain Voltage and Current. $400 \mathrm{VDc}, 2.333$ A Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: VDS(IC1), $500 \mathrm{~V} / \mathrm{div}$.
CH2: $\mathrm{I}_{\mathrm{D}(\mathrm{IC1}),} 2.5 \mathrm{~A} / \mathrm{div}$.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 60 - InnoSwitch3-AQ Drain Voltage and Current. $1000 \mathrm{~V}_{\mathrm{DC}}$ 2.333 A Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: VD(IC1), $500 \mathrm{~V} / \mathrm{div}^{2}$
CH2: $\mathrm{I}_{\text {(IC1), }}$ 2.5 A / div.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

11.2.2.3 Synchronous Rectifier MOSFETs Drain Voltage and Current at $25{ }^{\circ} \mathrm{C}$ Ambient Temperature

Figure 61 - Synch. Rectifier Drain Voltage and Current. 80 VDC, 2.333 A Load, $25^{\circ} \mathrm{C}$ Ambient.
CH3: VDS(SR), $50 \mathrm{~V} /$ div.
CH2: Id(SR), 25 A / div.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 63 - Synch. Rectifier Drain Voltage and Current. 800 Vdc, 2.333 A Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: VDS(SR), $50 \mathrm{~V} / \mathrm{div}^{2}$.
CH2: Id(SR), 25 A / div.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 62 - Synch. Rectifier Drain Voltage and Current. $400 \mathrm{~V}_{\mathrm{Dc}}$, 2.333 A Load, $25^{\circ} \mathrm{C}$ Ambient.
CH3: VDS(SR), $50 \mathrm{~V} / \mathrm{div}^{2}$
CH2: $\left.\mathrm{Id}_{\mathrm{SR}} \mathrm{S}\right)$, $25 \mathrm{~A} / \mathrm{div}$.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

Figure 64 - Synch. Rectifier Drain Voltage and Current. 1000 Voc, 2.333 A Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: VDS(SR), $50 \mathrm{~V} / \mathrm{div}$.
CH2: Id(SR), 25 A / div.
Time: $5 \mu \mathrm{~s} / \mathrm{div}$.

11.2.2.4 Short-Circuit Response

The unit is tested by applying output short circuit during normal working conditions and then removing the short circuit to see if the unit will recover and operate normally. The expected response during short-circuit is for the unit to go to AR (auto-restart) mode and attempt recovery every 2.1 seconds. Full load configuration is at 6.43 ohms constant resistance.

,
Figure 65 - InnoSwitch3-AQ and SR FET Drain Voltage. 80 Vdc, Full Load-Short-Full Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: $\mathrm{V}_{\mathrm{DS}(I \mathrm{I} 1),} 500 \mathrm{~V} /$ div.
CH2: VDs(Q2), $50 \mathrm{~V} /$ div.
Time: $2 \mathrm{~s} / \mathrm{div}$.

兄
Figure 67 - InnoSwitch3-AQ and SR FET Drain voltage. $800 \mathrm{~V}_{\mathrm{DC}}$, Full Load-Short-Full Load, $85^{\circ} \mathrm{C}$ Ambient.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{DS}(\mathrm{IC1} 1),} 500 \mathrm{~V} /$ div.
CH2: VDs(Q2), $50 \mathrm{~V} /$ div.
Time: $2 \mathrm{~s} / \mathrm{div}$.

風
Figure 66 - InnoSwitch3-AQ and SR FET Drain Voltage. 400 Voc, Full Load-Short-Full Load, $85^{\circ} \mathrm{C}$ Ambient.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{DS}(\mathrm{IC1} 1),} 500 \mathrm{~V} /$ div.
CH2: VDs(Q2), $50 \mathrm{~V} / \mathrm{div}$.
Time: $2 \mathrm{~s} / \mathrm{div}$.

d
Figure 68 - InnoSwitch3-AQ and SR FET Drain voltage. $1000 \mathrm{~V}_{\mathrm{DC}}$, Full Load-Short-Full Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: VDS(IC1), $500 \mathrm{~V} /$ div.
CH2: VDs(Q2), $50 \mathrm{~V} / \mathrm{div}$.
Time: $2 \mathrm{~s} / \mathrm{div}$.

11.3 Load Transient Response

Output voltage waveform on the board was captured with dynamic load transient from 0\% to 50% and 50% to 100%. The duration for the load states is set to 100 ms and the load slew rate is $100 \mathrm{~mA} / \mu \mathrm{s}$. The test is done at $85^{\circ} \mathrm{C}$ ambient temperature.

Dynamic Load Settings	$\begin{aligned} & \mathrm{V}_{\text {IN }} \\ & (\mathrm{V}) \\ & \hline \end{aligned}$	Δ Vout (V)	$\begin{gathered} \text { Vout(MAX) } \\ (\mathrm{V}) \\ \hline \end{gathered}$	Vout(min) (V)
0\% to 50\%	60	0.223	15.261	15.0295
	80	0.295	15.2915	14.981
	400	0.284	15.324	15.0215
	800	0.281	15.343	15.0525
	1000	0.308	15.381	15.0635
50\% to 100\%	60	0.172	15.2705	15.091
	80	0.481	15.295	14.8075
	400	0.231	15.3515	15.114
	800	0.242	15.3775	15.129
	1000	0.254	15.391	15.129

Table 12 - Load Transient Response.

Figure 69 - Output Voltage and Current.
60 VDC ,
0 mA to 500 mA Transient Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, 200 mV / div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta V=223.651 \mathrm{mV}$.

Figure $\mathbf{7 1}$ - Output Voltage and Current.
400 VDC ,
0 mA to 1166 mA Transient Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta V=284.318 \mathrm{mV}$.

Figure $\mathbf{7 0}$ - Output Voltage and Current.
80 VdC ,
0 mA to 1166 mA Transient Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, 200 mV / div.
CH2: Iout, 1 A / div.
Time: 100 ms / div.
$\Delta V=295.174 \mathrm{mV}$.

Figure 72 - Output Voltage and Current.
800 VdC ,
0 mA to 1166 mA Transient Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, 200 mV / div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta V=280.750 \mathrm{mV}$.

Figure 73 - Output Voltage and Current. $1000 \mathrm{VDC}_{\text {, }}$ 0 mA to 1166 mA Transient Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta V=307.693 \mathrm{mV}$.
11.3.2 Output Voltage Ripple with 50% to 100% Transient Load at $85^{\circ} \mathrm{C}$ Ambient Temperature

Figure $\mathbf{7 4}$ - Output Voltage and Current.
60 VDC ,
500 mA to 1000 mA Transient Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} / \mathrm{div}$.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta V=172.295 \mathrm{mV}$.

Figure 75 - Output Voltage and Current.
$80 V_{b c}$,
1166 mA to 2333 mA Transient Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta V=480.733 \mathrm{mV}$.

Figure 76 - Output Voltage and Current.
400 VDC,
1166 mA to 2333 mA Transient Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, 200 mV / div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta \mathrm{V}=230.852 \mathrm{mV}$.

Figure 77 - Output Voltage and Current.
800 VDC,
1166 mA to 2333 mA Transient Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, $1 \mathrm{~A} / \mathrm{div}$.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta \mathrm{V}=242.455 \mathrm{mV}$.

Figure 78 - Output Voltage and Current. $1000 \mathrm{~V}_{\mathrm{DC}}$,
1166 mA to 2333 mA Transient Load, $85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta V=253.807 \mathrm{mV}$.

11.4 Output Ripple Measurements

11.4.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized to reduce spurious signals due to pick-up. Details of the probe modification are provided in Figure 79 and Figure 80 below.

A CT2708 probe adapter is affixed with a $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ ceramic capacitor placed in parallel across the probe tip. A twisted pair of wires kept as short as possible is soldered directly to the probe and the output terminals.

Figure 79 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed.)

Figure $8 \mathbf{8 0}$ - Oscilloscope Probe with Cal Test CT2708 BNC Adapter. (Modified with Wires for Ripple Measurement, and a Parallel Decoupling Capacitor Added.)

11.4.2 Output Voltage Ripple Waveforms

Output voltage ripple waveform at full load was captured at the output terminals using the ripple measurement probe with decoupling capacitor.

11.4.2.1 Output Voltage Ripple at $85^{\circ} \mathrm{C}$ Ambient Constant Full Load ${ }^{38}$

Figure 81 - Output Voltage Ripple. $30 \mathrm{VDC}, 500 \mathrm{~mA}$ Load, $85^{\circ} \mathrm{C}$ Ambient. CH1: Vout, 50 mV / div.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=207.709 \mathrm{mV}$.

Figure 83 - Output Voltage Ripple.
80 VDC, $2333 \mathrm{~mA}, 85^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} /$ div.
$V_{\text {RIPPLE }}=170.316 \mathrm{mV}$.

Figure 82 - Output Voltage Ripple.
60 Voc, 1000 mA Load, $85{ }^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=136.603 \mathrm{mV}$.

Figure 84 - Output Voltage Ripple.
400 VDc, $2333 \mathrm{~mA}, 85^{\circ} \mathrm{C}$ Ambient.
CH 1 : Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} /$ div.
$V_{\text {RIPPLE }}=188.531 \mathrm{mV}$.

[^23]
d

Figure 85 - Output Voltage Ripple. 800 VDC, $2333 \mathrm{~mA}, 85^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=205.002 \mathrm{mV}$.

四

Figure 86 - Output Voltage Ripple. 1000 VDC, $2333 \mathrm{~mA}, 85{ }^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} /$ div.
$V_{\text {RIPPLE }}=215.819 \mathrm{mV}$.

11.4.2.2 Output Voltage Ripple at $25^{\circ} \mathrm{C}$ Ambient Constant Full Load ${ }^{39}$

Figure 87 - Output Voltage Ripple.
$30 \mathrm{VDC}, 500 \mathrm{~mA}$ Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=165.891 \mathrm{mV}$.

Figure 89 - Output Voltage Ripple.
80 VDc, $2333 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPLLE }}=177.737 \mathrm{mV}$.

Figure 88 - Output Voltage Ripple.
60 Vcc, 1000 mA Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} /$ div.
$V_{\text {RIPPLE }}=130.766 \mathrm{mV}$.

Figure 90 - Output Voltage Ripple.
400 Voc, $2333 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=177.837 \mathrm{mV}$.

[^24]

Figure 91 - Output Voltage Ripple. 800 VDC, $2333 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} /$ div.
$V_{\text {RIPPLE }}=194.235 \mathrm{mV}$.

Figure 92 - Output Voltage Ripple. 1000 VDc, $2333 \mathrm{~mA}, 25^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} /$ div. Time: $10 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=201.313 \mathrm{mV}$.

11.4.2.3 Output Voltage Ripple at $-40^{\circ} \mathrm{C}$ Ambient Constant Full Load ${ }^{40}$

Figure 93 - Output Voltage Ripple. 30 VDC, 500 mA Load, $-40^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=199.617 \mathrm{mV}$.

Figure 95 - Output Voltage Ripple.
$80 \mathrm{~V}_{\mathrm{dc}}, 2333 \mathrm{~mA},-40^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=173.404 .737 \mathrm{mV}$.

Figure 94 - Output Voltage Ripple.
60 VDc, 1000 mA Load, $-40^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=136.762 \mathrm{mV}$.

Figure 96 - Output Voltage Ripple.
400 Voc, $2333 \mathrm{~mA},-40^{\circ} \mathrm{C}$ Ambient.
CH 1 : Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=185.098 \mathrm{mV}$.

[^25]

Figure 97 - Output Voltage Ripple. 800 Voc, $2333 \mathrm{~mA},-40^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=207.592 \mathrm{mV}$.

Figure 98 - Output Voltage Ripple.
$1000 \mathrm{~V}_{\mathrm{Dc}}, 2333 \mathrm{~mA},-40^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} /$ div.
Time: $10 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=217.593 \mathrm{mV}$.

11.4.3 Output Ripple vs. Load

11.4.3.1 Output Ripple at $85{ }^{\circ} \mathrm{C}$ Ambient

Figure 99 - Output Ripple Voltage Across Full Load Range (85 ${ }^{\circ} \mathrm{C}$ Ambient)..41

[^26]
11.4.3.2 Output Ripple at $25{ }^{\circ} \mathrm{C}$ Ambient

Figure $\mathbf{1 0 0}$ - Output Ripple Voltage Across Full Load Range ($25^{\circ} \mathrm{C}$ Ambient). ${ }^{42}$

[^27]
11.4.3.3 Output Ripple at $-40^{\circ} \mathrm{C}$ Ambient

Figure 101 - Output Ripple Voltage Across Full Load Range (-40 ${ }^{\circ} \mathrm{C}$ Ambient). ${ }^{43}$

[^28]
12 Diagnostic Circuit

The diagnostic circuit was tested by applying the following signals and settings:
PSU_CHECK: 3.3 V and 5 V
PGOOD_DETECT: 5 V with 300Ω pull up resistor (10 mA)
15.0 V Output: No-load and Full load (35 W)

\ldots
Figure 102 - Diagnostic Circuit.
PSU_CHECK $=5 \mathrm{~V}$, PGOOD_DETECT $=5$ V, No-Load.
CH1: Vout, $10 \mathrm{~V} / \mathrm{div}$.
CH2: Vpsu_check, $5 \mathrm{~V} /$ div.
CH3: Vpgood_detect, 5 V / div.

居
Figure 104 - Diagnostic Circuit.
PSU_CHECK = 3.3 V, PGOOD_DETECT = 5 V , No-Load.
CH1: Vout, $10 \mathrm{~V} /$ div.
CH2: Vpsu_check, $5 \mathrm{~V} /$ div.
CH3: Vpgood_detect, $5 \mathrm{~V} /$ div.

Figure 103 - Diagnostic Circuit.
PSU_CHECK = 5 V, PGOOD_DETECT = 5 V, Full Load.
CH1: Vout, $10 \mathrm{~V} / \mathrm{div}$.
$\mathrm{CH} 2: \mathrm{V}_{\text {PSU_check, }} 5 \mathrm{~V} / \mathrm{div}$.
CH3: Vpgood_detect, 5 V / div.

C
Figure 105 - Diagnostic Circuit.
PSU_CHECK = 3.3 V, PGOOD_DETECT = 5 V , Full Load.
CH1: Vout, $10 \mathrm{~V} /$ div.
CH2: Vpsu_check, $5 \mathrm{~V} /$ div.
CH3: Vpgood_detect, $5 \mathrm{~V} / \mathrm{div}$.

13 Revision History

Date	Author	Revision	Description \& Changes	Reviewed
$13-$ Sep-22	MR	1.0	Initial Release.	Apps \& Mktg
09-Jul-23	JS	2.0	Updated and added sections and figures for the data at $-40^{\circ} \mathrm{C}$ ambient temperature test condition.	Apps \& Mktg
$08-$ Mar-23	JS	2.1	Updated Schematic.	Apps \& Mktg

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' automotive RDHP and DER in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Worldwide: +1-65-635-64480
Americas: +1-408-414-9621
e-mail: usasales@power.com

GERMANY (AC-DC/LED Sales)
Einsteinring 24
85609 Dornach/Aschheim Germany
Tel: +49-89-5527-39100
e-mail: eurosales@power.com

GERMANY (Gate Driver Sales)
HellwegForum 1
59469 Ense
Germany
Tel: +49-2938-64-39990
e-mail: igbt-driver.sales@
power.com

INDIA

\#1, $14^{\text {th }}$ Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
e-mail: indiasales@power.com

ITALY
Via Milanese 20, $3^{\text {rd }}$. FI.
20099 Sesto San Giovanni (MI) Italy
Phone: +39-024-550-8701
e-mail: eurosales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 e-mail: japansales@power.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea
Phone: +82-2-2016-6610
e-mail: koreasales@power.com

SINGAPORE

51 Newton Road, \#19-01/05 Goldhill Plaza Singapore, 308900
Phone: +65-6358-2160
e-mail:
singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
e-mail:
taiwansales@power.com

UK

Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge
CB4 1YG
Phone: +44 (0) 7823-557484
e-mail: eurosales@power.com

[^0]: ${ }^{1}$ Excluding input and output terminal blocks.
 ${ }^{2}$ Output current rating derated to 1000 mA at 60 V and 500 mA at 30 V input.
 ${ }^{3} 83.7 \%$ minimum full load efficiency across input voltage range at $-40^{\circ} \mathrm{C}$ ambient temperature.
 ${ }^{4}$ AEC-Q200 transformer and input common mode choke qualification belongs to final design.

[^1]: ${ }^{5}$ Clearance and creepage distances are derived from IEC 60664-1 and IEC 60664-4.

[^2]: ${ }^{6}$ Output current is derated at voltages less than 80 V .

[^3]: ${ }^{9} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^4]: ${ }^{10} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^5]: ${ }^{11} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^6]: ${ }^{12} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^7]: ${ }^{13} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^8]: ${ }^{14} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^9]: ${ }^{15} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^10]: ${ }^{16} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^11]: ${ }^{17} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^12]: 18100% load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^13]: 19100% load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^14]: ${ }^{20} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^15]: ${ }^{21}$ Inrush current was limited by adding a 10Ω series resistor between the DC link capacitor and the unit under test.
 ${ }^{22}$ Voltage dip on the $V_{\text {IN }}$ waveform is due to the effective line impedance from the $D C$ link capacitor to the unit under test.
 ${ }^{23}$ The instance of small step increase seen on the Iout waveform is due to the CR (Constant Resistance) mode response of the electronic load. The delay between $\mathrm{V}_{\text {out }}$ and $\mathrm{I}_{\text {out }}$ rising edge is also due to the electronic load response.

[^16]: ${ }^{24}$ The time between when $V_{\text {IN }}$ is turned on and the InnoSwitch starts switching is due to the "Wait and Listen" period of the InnoSwitch.
 ${ }^{25}$ The change in the switching frequency of the InnoSwitch is due to the CR (Constant Resistance) mode response of the electronic load.

[^17]: ${ }^{26}$ The time between when $V_{\text {IN }}$ is turned on and the SR FET starts switching is due to the "Wait and Listen" period of the InnoSwitch.
 ${ }^{27}$ The change in the switching frequency of the SR FET is due to the CR (Constant Resistance) mode response of the electronic load.

[^18]: ${ }^{28}$ Voltage dip on the $\mathrm{V}_{\text {IN }}$ waveform is due to the effective line impedance from the DC link capacitor to the unit under test.
 ${ }^{29}$ The instance of small step increase seen on the Iout waveform is due to the CR (Constant Resistance) mode response of the electronic load. The delay between $\mathrm{V}_{\text {out }}$ and $\mathrm{I}_{\text {out }}$ rising edge is also due to the electronic load response.

[^19]: ${ }^{30}$ The time between when $\mathrm{V}_{\text {IN }}$ is turned on and the InnoSwitch starts switching is due to the "Wait and Listen" period of the InnoSwitch.
 ${ }^{31}$ The change in the switching frequency of the InnoSwitch is due to the CR (Constant Resistance) mode response of the electronic load.

[^20]: ${ }^{32}$ The time between when $V_{\text {IN }}$ is turned on and the SR FET starts switching is due to the "Wait and Listen" period of the InnoSwitch.
 ${ }^{33}$ The change in the switching frequency of the SR FET is due to the CR (Constant Resistance) mode response of the electronic load.

[^21]: ${ }^{34}$ Synchronous MOSFET current is the sum of Q1 and Q2 currents.
 ${ }^{35}$ Synchronous MOSFET voltage was taken from Q2.

[^22]: ${ }^{36}$ Synchronous MOSFET current is the sum of Q1 and Q2 currents.
 ${ }^{37}$ Synchronous MOSFET voltage was taken from Q2.

[^23]: ${ }^{38}$ Peak-to-peak voltage measurement recorded in each oscilloscope capture is the worst-case ripple which includes both the low frequency and high frequency switching voltage ripple (top portion of each capture).

[^24]: ${ }^{39}$ Peak-to-peak voltage measurement recorded in each oscilloscope capture is the worst-case ripple which includes both the low frequency and high frequency switching voltage ripple (top portion of each capture).

[^25]: ${ }^{40}$ Peak-to-peak voltage measurement recorded in each oscilloscope capture is the worst-case ripple which includes both the low frequency and high frequency switching voltage ripple (top portion of each capture).

[^26]: ${ }^{41} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^27]: ${ }^{42} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

[^28]: ${ }^{43} 100 \%$ load for 60 V and 30 V input are 1000 mA and 500 mA , respectively.

