## Design Example Report

| Title | 10 W, 7.5 V Output Automotive Power <br> Supply for 800 V Systems Using <br> InnoSwitch |
| :--- | :--- |
| Specification 3 -AQ INN3947CQ |  |$|$| $30 \mathrm{VDC}-1000$ VDC Input; 7.5 V / 1.33 A Output |  |
| :--- | :--- |
| Application | Traction Inverter Gate and/or Emergency Power <br> Supply |
| Author | Automotive Systems Engineering Department |
| Document <br> Number | DER-946Q |
| Date | July 31, 2023 |
| Revision | 2.0 |

## Summary and Features

- Ultra-compact design for $800 \mathrm{~V}_{\mathrm{DC}}$ BEV automotive applications
- Low component count design (60 total components)
- Wide range input from $30 \mathrm{~V}_{\mathrm{DC}}$ to $1000 \mathrm{~V}_{\mathrm{DC}}$
- Reinforced 1000 V isolated transformer (IEC-60664-1 and IEC-60664-4 compliant)
- $\geq 80 \%$ efficiency across input voltage range
- Secondary-side regulated output
- Ambient operating temperature from $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
- Fully fault protected including output current limit and short-circuit protection


## Table of Contents

1 Introduction ..... 4
2 Design Specification ..... 6
2.1 Electrical Specifications ..... 6
2.2 Isolation Coordination ..... 7
2.3 Environmental Specifications ..... 7
3 Schematic ..... 8
4 Circuit Description ..... 9
4.1 Input Filter ..... 9
4.2 High-Voltage Side Circuit ..... 9
4.3 Low-Voltage Side Circuit ..... 10
4.4 Diagnostic Circuit ..... 11
5 PCB Layout ..... 12
6 Bill of Materials ..... 15
7 Transformer Specification (T1) ..... 17
7.1 Electrical Diagram ..... 17
7.2 Electrical Specifications ..... 17
7.3 Transformer Build Diagram ..... 18
7.4 Material List ..... 18
7.5 Winding Instructions ..... 19
8 Transformer Design Spreadsheet ..... 25
9 Performance Data ..... 28
9.1 No-Load Input Power ..... 30
9.2 Efficiency ..... 31
9.2.1 Line Efficiency ..... 31
9.2.2 Load Efficiency ..... 32
9.2.2.1 Efficiency vs. Load at $105^{\circ} \mathrm{C}$ Ambient ..... 32
9.2.2.2 Efficiency vs. Load at $25^{\circ} \mathrm{C}$ Ambient ..... 33
9.2.2.3 Efficiency vs. Load at $-40^{\circ} \mathrm{C}$ Ambient ..... 34
9.3 Output Line and Load Regulation at $105^{\circ} \mathrm{C}$ Ambient. ..... 35
9.4 Output Line and Load Regulation at $25^{\circ} \mathrm{C}$ Ambient ..... 36
9.5 Output Line and Load Regulation at $-40^{\circ} \mathrm{C}$ Ambient ..... 37
10 Thermal Performance ..... 38
10.1 Thermal Data at $105^{\circ} \mathrm{C}$ Ambient Temperature ..... 38
10.2 Thermals Data at $25^{\circ} \mathrm{C}$ Ambient Temperature ..... 39
11 Waveforms ..... 41
11.1 Start-Up Waveforms ..... 41
11.1.1 $25^{\circ} \mathrm{C}$ Ambient Temperature ..... 41
11.1.1.1 Output Voltage and Current ..... 41
11.1.1.2 InnoSwitch3-AQ Drain Voltage and Current ..... 43
11.1.1.3 SR FET Drain Voltage and Current ..... 44
11.1.2 - $40{ }^{\circ} \mathrm{C}$ Ambient Temperature ..... 45
11.1.2.1 Output Voltage and Current ..... 45
11.1.2.2 InnoSwitch3-AQ Drain Voltage and Current ..... 46
11.1.2.3 SR FET Drain Voltage and Current ..... 47
11.2 Steady-State Waveforms ..... 48
11.2.1 Switching Waveforms at $105^{\circ} \mathrm{C}$ Ambient Temperature ..... 48
11.2.1.1 Normal Operation Component Stress ..... 48
11.2.1.2 Short-Circuit Response ..... 49
11.2.2 Switching Waveforms at $25^{\circ} \mathrm{C}$ Ambient Temperature ..... 50
11.2.2.1 InnoSwitch3-AQ Drain Voltage and Current. ..... 50
11.2.2.2 SR FET Drain Voltage and Current ..... 51
11.3 Load Transient Response ..... 52
11.3.1 0\% to 50\%. ..... 53
11.3.2 $50 \%$ to $100 \%$ ..... 54
11.4 Output Ripple Measurements ..... 55
11.4.1 Ripple Measurement Technique ..... 55
11.4.2 Output Voltage Ripple Waveforms ..... 56
11.4.2.1 Output Voltage Ripple at $105^{\circ} \mathrm{C}$ Ambient ..... 56
11.4.2.2 Output Voltage Ripple at $25^{\circ} \mathrm{C}$ Ambient ..... 57
11.4.2.3 Output Voltage Ripple at $-40^{\circ} \mathrm{C}$ Ambient ..... 58
11.4.3 Output Ripple vs. Load ..... 59
11.4.3.1 Output Ripple at $105^{\circ} \mathrm{C}$ Ambient ..... 59
11.4.3.2 Output Ripple at $25^{\circ} \mathrm{C}$ Ambient ..... 60
11.4.3.3 Output Ripple at $-40^{\circ} \mathrm{C}$ Ambient ..... 61
12 Diagnostic Circuit ..... 62
13 Revision History ..... 63

## Disclaimer:

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein.

No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations, or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

## 1 Introduction

This engineering report describes a 10 W single output automotive emergency power supply. It is intended for use in 800 V battery system electric vehicles supporting an ultrawide input range of $30 \mathrm{~V}_{\mathrm{DC}}$ to $1000 \mathrm{~V}_{\mathrm{DC}}$. This design utilizes the 1700 V rated INN3947CQ from the InnoSwitch3-AQ family of ICs in a flyback converter configuration.

The design provides reinforced isolation between the primary (high-voltage input) and secondary (output) sides by observing the creepage and clearance requirements as indicated in IEC-60664 parts 1 and 4.

The report contains the power supply specification, schematic diagram, printed circuit board layout, bill of materials, magnetics specifications, and performance data.


Figure 1 - Populated Circuit Board Photograph, Entire Assembly.


Figure 2 - Populated Circuit Board Photograph - Top.


Figure 3 - Populated Circuit Board Photograph - Bottom.


Figure 4 - Populated Circuit Board Photograph - Side.
The design can deliver the full 10 W output power up to $105^{\circ} \mathrm{C}$ ambient temperature over the entire $30 \mathrm{~V}_{\mathrm{DC}}$ to $1000 \mathrm{~V}_{\mathrm{DC}}$ input voltage range. The 7.5 V output is typically configured to provide a redundant supply should the vehicle 12 V system supplying the traction inverter fail. This is a common requirement to meet functional safety by allowing the inverter to provide active short-circuit, active discharge and reporting functions.
The InnoSwitch3-AQ IC maintains necessary regulation by directly sensing the output voltage and providing fast, accurate feedback to the primary-side via FluxLink ${ }^{\top \mathrm{M}}$. Secondary-side control also enables the use of synchronous rectification improving the overall efficiency compared to diode rectification thus saving cost and space by eliminating heat sinking.

## 2 Design Specification

The following tables below represent the minimum acceptable performance of the design. Actual performance is listed in the results section.

### 2.1 Electrical Specifications

| Description | Symbol | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Parameters |  |  |  |  |  |
| Positive DC Link Input Voltage Referenced to HV - Switching Operation Conditions Operating Switching Frequency | HV <br> fsw | $\begin{aligned} & 30 \\ & 25 \end{aligned}$ | 800 | $\begin{gathered} 1000 \\ 56 \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DC}} \\ & \mathrm{kHz} \end{aligned}$ |
| Output Parameters |  |  |  |  |  |
| Output Voltage Parameters <br> Regulated Output Voltage <br> Output Voltage Load and Line Regulation <br> Ripple Voltage Measured on Board | $\begin{gathered} \mathbf{V}_{\text {cC }} \\ \mathbf{V}_{\text {REG }} \\ \mathbf{V}_{\text {RIPPLE }} \end{gathered}$ | $\begin{gathered} 7.13 \\ -5 \end{gathered}$ | $\begin{aligned} & 7.5 \\ & 500 \end{aligned}$ | $\begin{gathered} 7.88 \\ +5 \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DC}} \\ & \% \\ & \mathrm{mV} \end{aligned}$ |
| Output Current Parameters Output Current | Iout |  | 1333 |  | mA |
| Output Power Parameters <br> Continuous Output Power at 30 VDC -1000 $V_{D C}$ Input | Pout |  |  | 10 | W |
| Output Overshoot and Undershoot During Dynamic Load Condition | $\Delta \mathrm{V}_{\text {OUt }}$ |  | 5 |  | \% |

Table 1 - Electrical Specifications.

### 2.2 Isolation Coordination

| Description | Symbol | Min. Typ. Max. Units |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Maximum Blocking Voltage of INN3947CQ | BV ${ }_{\text {DSs }}$ |  | 1700 | V |
| System Voltage | $V_{\text {system }}$ |  | 1202 | V |
| Working Voltage | $\mathrm{V}_{\text {working }}$ |  | 1000 | V |
| Pollution Degree | PD |  | 2 |  |
| CTI for FR4 | CTI | 175 | 399 |  |
| Rated Impulse Voltage | $\mathrm{V}_{\text {Impuise }}$ |  | 2.5 | kV |
| Altitude Correction Factor for $\mathrm{ha}_{\text {a }}$ | $C_{\text {ha }}$ |  | 1.59 |  |
| Technical Cleanliness Requirement |  |  | 0.6 | mm |
| Basic Clearance Distance Requirement | CLRbasic | 3.0 |  | mm |
| Reinforced Clearance Distance Requirement | CLR $\mathrm{reinforced}^{\text {d }}$ | 5.4 |  | mm |
| Basic Creepage Distance Requirement for PCB | $\mathrm{CPG}_{\text {basic(PCB) }}$ | 5.6 |  | mm |
| Reinforced Creepage Distance Requirement for PCB | CPG reinforced(PCb) $^{\text {a }}$ | 10.6 |  | mm |
| Isolation Test Voltage Between Primary and SecondarySide for 60s | $\mathrm{V}_{\text {Iso }}$ | 5000 |  | $\mathrm{V}_{\mathrm{PK}}$ |
| Partial Discharge Test Voltage | $\mathrm{V}_{\text {PD_TEST }}$ | 1803 |  | $\mathrm{V}_{\mathrm{PK}}$ |

Table 2 - Isolation Coordination ${ }^{1}$.

### 2.3 Environmental Specifications

| Description | Symbol | Min. | Typ. | Max. | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Ambient Temperature | Ta | -40 |  | 105 | ${ }^{\circ} \mathrm{C}$ |
| Altitude of Operation | ha |  |  | 5500 | m |
| Relative Humidity | Rh |  |  | 85 | $\%$ |

Table 3 - Environmental Specifications.

[^0]
## 3 Schematic



Figure 5 - DER-946Q Schematic Diagram.

## 4 Circuit Description

### 4.1 Input Filter

The automotive inverter environment is harsh, characterized by high dv/dt and di/dt from the switching action of the power modules. Large common mode currents are generated across the isolation barrier of the power supply which in turn can interfere with both the power supply operation, other inverter blocks and measurement signal integrity. The input common mode choke L1 together with the bypass capacitors C1 to C3 and C22 to C24 helps filter unwanted noise and prevents them from affecting the overall performance of the design.

Common mode inductor L1 was selected such that the reference board would be able to withstand the Power Integrations' internal "Resistance to ripple on high voltage network" test. The test injects high frequency ripple on the high-voltage input to simulate the actual DC link capacitor ripple in a traction inverter. The final value of L1 will depend on the final design or application requirement. The higher the noise, the higher the inductance of L1 should be. However, consideration should be given between inductance value and the DC resistance (DCR) which has an impact on the overall efficiency of the design.

Capacitor C1 to C3 and C22 to C24 bypass capacitors were selected so as not to exceed $65 \%$ of their voltage rating as well as to maintain enough pad-to-pad distance to meet creepage and clearance requirements.

### 4.2 High-Voltage Side Circuit

The design uses a flyback converter to provide an isolated low-voltage output from the high-voltage input. One end of the flyback transformer T1 primary winding is connected to the high-voltage DC input while the other end is connected to the drain terminal of the integrated 1700 V power MOSFET inside the INN3947CQ IC1.

Primary clamp circuit formed by diodes D1, D2, resistors R2, R3, and R4 and capacitors C4, C5, C6 limits the peak drain-source voltage of IC1 at the instant the switch inside IC1 turns off. As compared with the traditional RCD clamp, two surface mount AEC-Q qualified diodes were used in series to meet the creepage and clearance requirements as well as to ensure that the voltage across each diode would not exceed $70 \%$ of their rating. The resistor network helps to dissipate the energy stored in the leakage reactance of transformer T1. Snubber resistors were selected such that $80 \%$ of their voltage rating would not be exceeded while maintaining power dissipation of below $50 \%$. Cooling areas for the snubber resistors were also considered to ensure operating temperature would be at an acceptable level.

The IC is self-starting, using an internal high-voltage current source to charge the BPP pin capacitor C9 when the DC input voltage is first applied. INN3947CQ is guaranteed to startup from 30 V but typically will start below this level.

During normal operation, the primary-side block is powered by the auxiliary winding of transformer T1. The output of the auxiliary winding is rectified using diode D3 and filtered using capacitors C7 and C8. Resistor R5 limits the BPP pin current of IC1 to a value enough for normal operation without incurring excessive losses.

In this design the input primary under and overvoltage features were disabled by connecting the V pin to source. This approach does not require the voltage sensing resistor chain used in setting the under or overvoltage feature of IC1 thus saving cost and space. However, with no undervoltage feature the output may fail to reach regulation at voltages $<40 V_{D C}$ with high output load current, causing the output to rise but fail to reach regulation (hiccup). The timing is determined by the auto-restart feature, giving a 50 ms start-up attempt followed by a 2 s off time.

If this is not acceptable on the target design or application, then the undervoltage feature can be implemented. Please refer to the data sheet for the recommended circuit and design guide.

### 4.3 Low-Voltage Side Circuit

The secondary side of the INN3947CQ provides output voltage, output current sensing and gate drive for the MOSFET providing synchronous rectification (SR). The voltage across the secondary winding of the transformer T1 is rectified by the synchronous rectifier MOSFET Q1 and filtered by polymer capacitors C 15 and C 17 . High frequency ringing during switching is reduced by the RC snubber formed by resistors R7, R8 and capacitor C13.

Switching of Q1 is controlled by the secondary-side controller inside IC1. Control is based on the winding voltage sensed by the FWD pin via resistor R6. Capacitor C10 reduces voltage spike on the FWD pin to ensure that voltage seen by this pin won't exceed its maximum rating of 150 V .

In continuous conduction mode operation, the primary-side power MOSFET is turned off just prior to the secondary-side controller commanding a new switching cycle from the primary. In discontinuous mode the SR MOSFET is turned off when the voltage drop across it falls below a certain threshold of approximately $\mathrm{V}_{\mathrm{SR}(\mathrm{TH})}$. Secondary-side control of the primary-side power MOSFET avoids any possibility of cross conduction of the two switches and ensures reliable synchronous rectifier operation.

The secondary side of the IC is self-powered from either the secondary winding forward voltage (thru R6 and the FWD pin) or by the output voltage (thru the VOUT pin). In both cases, energy is used to charge the decoupling capacitor C14 via an internal regulator.

Resistors R10 and R11 form a voltage divider network that senses the output voltage. The INN3947CQ IC has an FB pin internal reference of 1.265 V . Capacitor C11 provides decoupling from high frequency noise affecting power supply operation. C16 and R12 form
a feedforward network to speed up the feedback response time and lower the output ripple.

Output current is sensed by monitoring the voltage drop across resistor R13. The resulting current measurement is filtered with the decoupling capacitor C12 and monitored across the IS and SECONDARY GROUND pins. An internal current sense threshold of around 35 mV is used to reduce losses. Once the threshold is exceeded, the INN3947CQ IC1 will enter auto-restart (AR) operation until the load current is reduced below threshold.

### 4.4 Diagnostic Circuit

As the design will be mainly used as an emergency power supply, the design is mainly kept unloaded but must be ready to be used anytime. A diagnostic circuit is provided as a way for the system to perform self-test to check if the emergency power supply is functional or not.

An additional interface for the diagnostic circuit was added, namely: PGOOD_DETECT and PSU_CHECK. PSU_CHECK is an input signal from the system's microcontroller (3.3 V to 5 V , maximum of 8 V ) used to query if the unit is functional. It drives MOSFET Q3 through resistors R15 and R17. When PSU_CHECK is HIGH, Q3 conducts and the REF pin of IC2, a TL431, is pulled low. A maximum of 0.5 W is loaded to the output via the parallel resistors R16, R18, R19, R20, and R22. Conversely, when PSU_CHECK is LOW the REF pin of IC2 is fed with the 7.5 V output voltage. R21 limits the current and C21 filters the signal to IC2's REF pin.

PGOOD_DETECT is an open collector output which must be pulled up externally (maximum of 36 V ). When the REF pin of IC2 is set to HIGH ( 7.5 V from the main output), PGOOD_DETECT is pulled low to approximately 2 V . A pull up resistor should be selected to provide at least 1 mA . When the REF pin of IC2 is set LOW, IC2 does not conduct and PGOOD_DETECT is set to $\mathrm{V}_{\mathrm{cc}}$ (pull up voltage provided). In summary, a PGOOD_DETECT LOW signal indicates that the unit is functional and ready to use while a HIGH signal indicates that the unit is not serviceable.

## 5 PCB Layout

Layers: Six (6) (typical for traction inverter control board)
Board Material: FR4
Board Thickness: 1.6 mm
Copper Weight: 2 oz


Mid-Layer 2


Figure 6 - DER-946Q PCB Layout.


Figure 7 - DER-946Q PCB Assembly (Top).


Figure 8 - DER-946Q PCB Assembly (Bottom).

## 6 Bill of Materials

| Item | Qty | Designator | Description | MFR Part Number | Manufacturer |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6 | $\begin{gathered} \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \\ \mathrm{C} 22, \mathrm{C} 23, \mathrm{C} 24 \\ \hline \end{gathered}$ | Multilayer Ceramic Capacitors MLCC - SMD/SMT $500 \mathrm{~V} 0.068 \mu \mathrm{~F}$ X7R 1206 10\% AEC-Q200 | C1206C683KCRACAUTO | KEMET |
| 2 | 3 | C4, C5, C6 | Multilayer Ceramic Capacitors MLCC - SMD/SMT CGA 1206450 V 0.01 нF COG 5\% AEC-Q200 | CGA5L4C0G2W103J160AA | TDK |
| 3 | 2 | C7, C8 | Multilayer Ceramic Capacitors MLCC - SMD/SMT 120650 VDC $10 \mu \mathrm{~F}$ 10\% X7R AEC-Q200 | CGA5L1X7R1H106K160AE | TDK |
| 4 | 1 | C9 | Multilayer Ceramic Capacitors MLCC - SMD/SMT CGA 060325 V $0.47 \mu \mathrm{~F}$ X7R 10\% AEC-Q200 | CGA3E3X7R1E474K080AB | TDK |
| 5 | 1 | C10 | Multilayer Ceramic Capacitors MLCC - SMD/SMT CGA 1206630 V 330 pF COG 5\% AEC-Q200 | CGA5C4C0G2J331J060AA | TDK |
| 6 | 2 | C11, C12 | Multilayer Ceramic Capacitors MLCC - SMD/SMT 50 V 330 pF COG 0402 5\% AEC-Q200 | AC0402JRNPO9BN331 | YAGEO |
| 7 | 1 | C13 | Multilayer Ceramic Capacitors MLCC - SMD/SMT 1206630 V 680 pF 5\% COG AEC-Q200 | CGA5F4C0G2J681J085AA | TDK |
| 8 | 1 | C14 | Multilayer Ceramic Capacitors MLCC - SMD/SMT $080525 \mathrm{~V} 2.2 \mu \mathrm{~F} 10 \%$ X7R AEC-Q200 | TMK212B7225KGHT | Taiyo Yuden |
| 9 | 2 | C15, C17 | $\begin{aligned} & \text { Polymer Aluminum Capacitors - } 25 \mathrm{~V} 560 \mu \mathrm{~F} \\ & 20 \% \text { AEC-Q200 } \end{aligned}$ | B40921A5567M000 | TDK |
| 10 | 2 | C16, C21 | Multilayer Ceramic Capacitors MLCC - SMD/SMT $040225 \mathrm{~V} 0.01 \mu \mathrm{~F} 10 \%$ X7R AEC-Q200 | CGA2B2X7R1E103K050BA | TDK |
| 11 | 1 | C19 | Multilayer Ceramic Capacitors MLCC - SMD/SMT $060325 \mathrm{~V} 0.1 \mu \mathrm{~F} 10 \%$ X7R AEC-Q200 | CGA3E2X7R1E104K080AA | TDK |
| 12 | 1 | C20 | Rectifiers 1000 V 1.5 A High Efficiency Rectifier | HMK316B7474KLHT | Taiyo Yuden |
| 13 | 2 | D1, D2 | Diode Standard 200 V 225 mA (DC) SMT SOD- 123 | NRVUS2MA | On Semi |
| 14 | 1 | D3 | Diode Schottky 20 V 350 mA (DC) SMT SOD- 323 | BAS21GWX | Nexperia |
| 15 | 1 | D5 | Schottky Diodes \& Rectifiers $5 \mu \mathrm{~A} 20 \mathrm{~V} 15$ A IFSM | SBR0240LPW-7B | Diodes, Inc. |
| 16 | 1 | D6 | Schottky Diodes \& Rectifiers If 1 A Vrrm 100 V | BZT52C5V1-13-F | Diodes, Inc. |
| 17 | 1 | IC1 | CV/CC QR Flyback Switcher IC with Integrated 1700 V Switch and FluxLink Feedback for Automotive Applications | INN3947CQ | Power Integrations |
| 18 | 1 | IC2 | Voltage References 2.495 VIN ADJ Shunt | TL431MFDT,215 | Nexperia |
| 19 | 1 | J1 | TERM BLOCK 1POS SIDE ENTRY SMD | SM99S01VBNN04G7 | METZ CONNECT |
| 20 | 1 | J2 | TERM BLOCK 1POS SIDE ENTRY SMD | SM99S01VBNN00G7 | METZ CONNECT |
| 21 | 1 | J3 | TERMI-BLOCK SMD MOUNT 180_4P_3.81 | 2383945-4 | TE Connectivity |
| 22 | 1 | L1 | Input Common Mode Choke | CM6518-AL | Coilcraft |
| 23 | 1 | Q1 | $\begin{array}{\|l} \hline \text { N-Channel MOSFET: } 150 \mathrm{~V} 9.4 \text { A PowerDI5060- } \\ 8 \end{array}$ | DMT15H017LPS-13 ${ }^{2}$ | Diodes, Inc. |
| 24 | 1 | Q3 | N-Channel MOSFET: $30 \mathrm{~V} 400 \mathrm{~mA} \mathrm{SOT}-23$ | NX3008NBK,215 | Nexperia |
| 25 | 1 | R1 | Thick Film Resistors - SMD $51 \Omega \frac{114}{4}$ W $12065 \%$ AEC-Q200 | AC1206JR-0751RL | YAGEO |
| 26 | 3 | R2, R3, R4 | Thick Film Resistors - SMD $120662 \mathrm{k} \Omega$ 1/4 W 5\% AEC-Q200 | ERJ-8GEYJ623V | Panasonic |
| 27 | 1 | R5 | $\begin{aligned} & \hline \text { Thick Film Resistors - SMD } 0402 \text { 1/16 W } 6.8 \\ & \mathrm{k} \Omega 5 \% \end{aligned}$ | CRCW04027K50JNED | Vishay |
| 28 | 1 | R6 | $\begin{aligned} & \text { Thick Film Resistors - SMD } 100 \Omega 100 \mathrm{~mW} \\ & 06031 \% \text { AEC-Q200 } \\ & \hline \end{aligned}$ | AC0603FR-13100RL | YAGEO |
| 29 | 2 | R7, R8 | Thick Film Resistors - SMD $56 \Omega \frac{114}{4}$ W $12065 \%$ AEC-Q200 | AC1206JR-0756RL | YAGEO |
| 30 | 1 | R9 | Thick Film Resistors - SMD $4.7 \Omega$ 1/8 W 0805 $5 \%$ AEC-Q200 | AC0805JR-074R7L | YAGEO |
| 31 | 1 | R10 | Thick Film Resistors - SMD $20.5 \mathrm{k} \Omega 100 \mathrm{~mW}$ 0402 1\% AEC-Q200 | ERJ-2RKF2052X | Panasonic |

${ }^{2}$ DMT15H017LPS-13 is qualified for AEC-Q101 reliability test only but not fully qualified for all AEC-Q criteria.

| 32 | 1 | R11 | Thick Film Resistors - SMD $04021 \% 100 \mathrm{k} \Omega$ AEC-Q200 | SG73S1ETTP1003F | KOA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33 | 1 | R12 | Thick Film Resistors - SMD 0402 5\% $10 \mathrm{k} \Omega 100$ mW AEC-Q200 | ERJ-U02J103X | Panasonic |
| 34 | 1 | R13 | $\begin{aligned} & \text { Current Sense Resistors - } 24 \mathrm{~m} \Omega 12061 / 2 \mathrm{~W} \\ & 1 \% \text { AEC-Q200 } \end{aligned}$ | UCR18EVHFSR024 | ROHM Semi |
| 35 | 1 | R14 | Thick Film Resistors - SMD $0 \Omega \frac{1}{4} \mathrm{~W} 12061 \%$ AEC-Q200 | AF1206JR-070RL | YAGEO |
| 36 | 1 | R15 | Thick Film Resistors - SMD $4.7 \Omega$ 1/16 W 0402 5\% AEC-Q200 | AC0402JR-074R7L | YAGEO |
| 37 | 5 | $\begin{gathered} \hline \text { R16, R18, R19, } \\ \text { R20, R22 } \\ \hline \end{gathered}$ | $\begin{array}{\|l} \hline \text { Thick Film Resistors - SMD } 470 \Omega 1 / 4 \mathrm{~W} 1206 \\ \text { 5\% AEC-Q200 } \\ \hline \end{array}$ | CRCW1206470RJNEB | Vishay |
| 38 | 1 | R17 | Thick Film Resistors - SMD $2.2 \mathrm{k} \Omega$ 1/16 W 0402 5\% AEC-Q200 | AC0402JR-072K2L | YAGEO |
| 39 | 1 | R21 | $\begin{array}{\|l} \hline \text { Thick Film Resistors - SMD } 4.7 \mathrm{k} \Omega 1 / 10 \mathrm{~W} 0402 \\ \text { 5\% AEC-Q200 } \end{array}$ | ERJ-2GEJ472X | Panasonic |
| 40 | 1 | T1 | 10 W Power Transformer | EFD25 | Power Integrations |
| 41 | 2 | T1-Core | 3C95 Ferrite core | EFD25/13/9-3C95 | Ferroxcube |
| 42 | 1 | T1-Bobbin | Customized bobbin | MCT-EFD25-N2 H7+5P | Power Integrations |
| 43 | 1 | Z1 | Printed circuit board | PIA-00073-TL | Power Integrations |

Table 4 - DER-946Q Bill of Materials ${ }^{3}$.

[^1]
## 7 Transformer Specification (T1)

### 7.1 Electrical Diagram



Figure 9 - Transformer Electrical Diagram.

### 7.2 Electrical Specifications

| Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Power | Output power secondary-side |  |  | 10 | W |
| Input voltage Vdc | Flyback topology | 30 | 800 | 1000 | V |
| Switching frequency | Flyback topology | 25 |  | 62 | kHz |
| Duty cycle | Flyback topology | 2.3 |  | 72.6 | \% |
| Np:Ns |  |  | 12 |  |  |
| Rdc | Primary-side |  | 520 |  | $\mathrm{m} \Omega$ |
| Rdc | Secondary side |  | 7.2 |  | $\mathrm{m} \Omega$ |
| Coupling capacitance | Primary-side to secondary-side Measured at $1 \mathrm{~V}_{\text {PK-PK, }} 100 \mathrm{kHz}$ frequency, between pin 1 to pin 12, with pins 1-3 shorted and pins $8-12$ shorted at $25^{\circ} \mathrm{C}$ |  |  | 25 | pF |
| Primary inductance | Measured at $1 \mathrm{~V}_{\text {PK-PK, }}$, typical switching frequency, between pin 1 to pin 2 , with all other windings open at $25^{\circ} \mathrm{C}$ |  | 538 |  | $\mu \mathrm{H}$ |
| Part to part tolerance | Tolerance of Primary Inductance | -5.0 |  | 5.0 | \% |
| Primary leakage inductance | Measured between pin 1 to pin 3, with all other windings shorted. |  |  | 8.6 | $\mu \mathrm{H}$ |

Table 5 - Transformer (T1) Electrical Specifications.

### 7.3 Transformer Build Diagram



Figure 10 - Transformer Build Diagram.

### 7.4 Material List

| Item | Description | Qty | UOM | Material | Manufacturer |
| :---: | :--- | :---: | :---: | :---: | :---: |
| [1] | Bobbin: MCT-EFD25-N2 H7+5P | 1 | PC | Phenolic | MyCoilTech |
| [2] | Core: EFD 25/13/9 | 2 | PCS | 3C95 <br> (or equivalent) | Ferroxcube |
| [3] | WD1 (Pri): 0.28 mm FIW 4, Class F | 2200 | mm |  | Elektrisola |
| [4] | WD2 (Bias): 0.25 mm FIW 4, Class F | 330 | mm | Copper Wire | Elektrisola |
| [5] | WD3a (Sec): T24A01PXXX-3, AWG 24 <br> PFA.003" | 900 | mm |  | Rubadue |
| [6] | 3M Polyimide 5413 Amber, <br> width: $0.625 i n ~(15.9 m m) ~$ | 360 | mm | 3M157181 <br> (or equivalent) | 3M |

Table 6 - Transformer (T1) Material List.

### 7.5 Winding Instructions

Winding
Preparation
Winding
Preparation


WD3: Sec



## 8 Transformer Design Spreadsheet

| 1 | DCDC_InnoSwitch3AQ1 <br> 700V_Flyback_120821; <br> Rev.2.2; Copyright <br> Power Integrations <br> 2021 | INPUT | INFO | OUTPUT | UNITS | InnoSwitch3-AQ1700V Flyback Design Spreadsheet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | APPLICATION VARIABLES |  |  |  |  |  |
| 3 | VOUT | 7.50 |  | 7.50 | V | Output Voltage |
| 4 | OPERATING CONDITION 1 |  |  |  |  |  |
| 5 | VINDC1 | 1000.00 |  | 1000.00 | V | Input DC voltage 1 |
| 6 | IOUT1 | 1.333 |  | 1.333 | A | Output current 1 |
| 7 | POUT1 |  |  | 10.00 | W | Output power 1 |
| 8 | EFFICIENCY1 |  |  | 0.85 |  | Converter efficiency for output 1 |
| 9 | Z_FACTOR1 |  |  | 0.50 |  | Z-factor for output 1 |
| 11 | OPERATING CONDITION 2 |  |  |  |  |  |
| 12 | VINDC2 | 30.00 |  | 30.00 | V | Input DC voltage 2 |
| 13 | IOUT2 | 1.333 |  | 1.333 | A | Output current 2 |
| 14 | POUT2 |  |  | 10.00 | W | Output power 2 |
| 15 | EFFICIENCY2 |  |  | 0.85 |  | Converter efficiency for output 2 |
| 16 | Z_FACTOR2 |  |  | 0.50 |  | Z-factor for output 2 |
| 69 | PRIMARY CONTROLLER SELECTION |  |  |  |  |  |
| 70 | ENCLOSURE |  |  | ADAPTER |  | Power supply enclosure |
| 71 | ILIMIT_MODE | STANDARD |  | STANDARD |  | Device current limit mode |
| 72 | VDRAIN_BREAKDOWN |  |  | 1700 | V | Device breakdown voltage |
| 73 | DEVICE_CODE | INN3947CQ |  | INN3947CQ |  | Device code |
| 74 | PDEVICE_MAX |  |  | 50 | W | Device maximum power capability |
| 75 | RDSON_25DEG |  |  | 1.53 | $\Omega$ | Primary switch on-time resistance at $25^{\circ} \mathrm{C}$ |
| 76 | RDSON_100DEG |  |  | 2.72 | $\Omega$ | Primary switch on-time resistance at $100^{\circ} \mathrm{C}$ |
| 77 | ILIMIT_MIN |  |  | 1.488 | A | Primary switch minimum current limit |
| 78 | ILIMIT_TYP |  |  | 1.600 | A | Primary switch typical current limit |
| 79 | ILIMIT_MAX |  |  | 1.712 | A | Primary switch maximum current limit |
| 80 | VDRAIN_ON_PRSW |  |  | 1.02 | V | Primary switch on-time voltage drop |
| 81 | VDRAIN_OFF_PRSW |  |  | 1130 | V | Peak drain voltage on the primary switch during turn-off |
| 85 | WORST CASE ELECTRICAL PARAMETERS |  |  |  |  |  |
| 86 | FSWITCHING_MAX | 31000 |  | 31000 | Hz | Maximum switching frequency at full load and the valley of the minimum input AC voltage |
| 87 | VOR | 90.0 |  | 90.0 | V | Voltage reflected to the primary winding (corresponding to set-point 1) when the primary switch turns off |
| 88 | KP |  |  | 1.633 |  | Measure of continuous/discontinuous mode of operation |
| 89 | MODE_OPERATION |  |  | DCM |  | Mode of operation |
| 90 | DUTYCYCLE |  |  | 0.655 |  | Primary switch duty cycle |
| 91 | TIME_ON_MIN |  |  | 0.60 | us | Minimum primary switch on-time |
| 92 | TIME_ON_MAX |  | Info | 24.01 | us | Maximum primary switch on-time is greater than 11.75 us: Increase the controller switching frequency or increase the VOR |
| 93 | TIME_OFF |  |  | 11.58 | us | Primary switch off-time |
| 94 | LPRIMARY_MIN |  |  | 511.3 | uH | Minimum primary magnetizing inductance |
| 95 | LPRIMARY_TYP |  |  | 538.2 | uH | Typical primary magnetizing inductance |
| 96 | LPRIMARY_TOL |  |  | 5.0 | \% | Primary magnetizing inductance tolerance |
| 97 | LPRIMARY_MAX |  |  | 565.2 | uH | Maximum primary magnetizing inductance |
| 99 | PRIMARY CURRENT |  |  |  |  |  |
| 100 | IAVG_PRIMARY |  |  | 1.263 | A | Primary switch average current |
| 101 | IPEAK_PRIMARY |  |  | 1.263 | A | Primary switch peak current |
| 102 | IPEDESTAL_PRIMARY |  |  | 0.375 | A | Primary switch current pedestal |
| 103 | IRIPPLE_PRIMARY |  |  | 1.263 | A | Primary switch ripple current |
| 104 | IRMS_PRIMARY |  |  | 0.562 | A | Primary switch RMS current |

106 SECONDARY CURRENT

| 107 | IPEAK_SECONDARY |  |  | 15.152 | A | Secondary winding peak current |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 108 | IPEDESTAL_SECONDARY |  |  | 0.000 | A | Secondary winding pedestal current |
| 109 | IRMS_SECONDARY |  |  | 3.828 | A | Secondary winding RMS current |
| 110 | IRIPPLE_CAP_OUT |  |  | 3.588 | A | Output capacitor ripple current |
| 113 | TRANSFORMER CONSTRUCTION PARAMETERS |  |  |  |  |  |
| 114 | CORE SELECTION |  |  |  |  |  |
| 115 | CORE | CUSTOM | Info | CUSTOM |  | The transformer windings may not fit: pick a bigger core or bobbin and refer to the Transformer Parameters tab for fit calculations |
| 116 | CORE NAME | EFD $25 / 13 / 9-$ $3 C 95$ |  | $\begin{gathered} \text { EFD } \\ 25 / 13 / 9- \\ 3 \text { C95 } \end{gathered}$ |  | Core code |
| 117 | AE | 58.0 |  | 58.0 | mm^2 | Core cross sectional area |
| 118 | LE | 57.0 |  | 57.0 | mm | Core magnetic path length |
| 119 | AL | 2660 |  | 2660 | nH | Ungapped core effective inductance per turns squared |
| 120 | VE | 3300 |  | 3300 | mm^3 | Core volume |
| 121 | BOBBIN NAME | MCT-EFD25N2 H7+P5 |  | $\begin{gathered} \hline \text { MCT- } \\ \text { EFD25-N2 } \\ \text { H7+P5 } \end{gathered}$ |  | Bobbin name |
| 122 | AW | 38.5 |  | 38.5 | mm^2 | Bobbin window area |
| 123 | BW | 16.20 |  | 16.20 | mm | Bobbin width |
| 124 | MARGIN |  |  | 0.0 | mm | Bobbin safety margin |
| 126 | PRIMARY WINDING |  |  |  |  |  |
| 127 | NPRIMARY |  |  | 48 |  | Primary winding number of turns |
| 128 | BPEAK |  |  | 3557 | Gauss | Peak flux density |
| 129 | BMAX |  |  | 2500 | Gauss | Maximum flux density |
| 130 | BAC |  |  | 1250 | Gauss | AC flux density (0.5 x Peak to Peak) |
| 131 | ALG |  |  | 234 | nH | Typical gapped core effective inductance per turns squared |
| 132 | LG |  |  | 0.285 | mm | Core gap length |
| 133 | LAYERS_PRIMARY |  |  | 1 |  | Primary winding number of layers |
| 134 | AWG_PRIMARY |  |  | 29 |  | Primary wire gauge |
| 135 | OD_PRIMARY_INSULATED |  |  | 0.337 | mm | Primary wire insulated outer diameter |
| 136 | OD_PRIMARY_BARE |  |  | 0.286 | mm | Primary wire bare outer diameter |
| 137 | CMA_PRIMARY |  |  | 225.4 | Cmils/A | Primary winding wire CMA |
| 139 | SECONDARY WINDING |  |  |  |  |  |
| 140 | NSECONDARY |  |  | 4 |  | Secondary winding number of turns |
| 141 | AWG_SECONDARY |  |  | 21 |  | Secondary wire gauge |
| 142 | OD_SECONDARY_INSULAT ED |  |  | 1.029 | mm | Secondary wire insulated outer diameter |
| 143 | OD_SECONDARY_BARE |  |  | 0.723 | mm | Secondary wire bare outer diameter |
| 144 | CMA_SECONDARY |  |  | 211.6 | Cmils/A | Secondary winding wire CMA |
| 146 | BIAS WINDING |  |  |  |  |  |
| 147 | NBIAS |  |  | 6 |  | Bias winding number of turns |
| 151 | PRIMARY COMPONENTS SELECTION |  |  |  |  |  |
| 152 | BIAS WINDING |  |  |  |  |  |
| 153 | VBIAS |  |  | 9.00 | V | Rectified bias voltage |
| 154 | VF_BIAS | 1.00 |  | 1.00 | V | Bias winding diode forward drop |
| 155 | VREVERSE_BIASDIODE |  |  | 134.00 | V | Bias diode reverse voltage (not accounting parasitic voltage ring) |
| 156 | CBIAS |  |  | 22 | uF | Bias winding rectification capacitor |
| 157 | CBPP |  |  | 0.47 | uF | BPP pin capacitor |
| 161 | SECONDARY COMPONENTS SELECTION |  |  |  |  |  |
| 162 | RECTIFIER |  |  |  |  |  |
| 163 | VDRAIN_OFF_SRFET |  |  | 109.00 | V | Secondary rectifier reverse voltage (accounting for a 20\% parasitic voltage ring) |
| 164 | SRFET | Auto |  | $\begin{gathered} \hline \text { DMT12H00 } \\ \text { 7LPS-13 } \end{gathered}$ |  | Secondary rectifier (Logic MOSFET) |

Power Integrations, Inc.
Tel: +14084149200 Fax: +14084149201
www.power.com

| 165 | VBREAKDOWN_SRFET |  |  | 120 | V | Secondary rectifier breakdown voltage |
| :---: | :--- | :---: | :---: | :---: | :---: | :--- |
| 166 | RDSON_SRFET |  |  | 14.1 | $\mathrm{~m} \Omega$ | SRFET on time drain resistance at 25degC <br> for VGS $=4.4 \mathrm{~V}$ |
| $\mathbf{1 6 8}$ | FEEDBACK COMPONENTS |  |  |  |  |  |
| 169 | RFB_UPPER |  |  | 100.00 | $\mathrm{k} \Omega$ | Upper feedback resistor (connected to the <br> output terminal) |
| 170 | RFB_LOWER |  |  | 20.50 | $\mathrm{k} \Omega$ | Lower feedback resistor |
| 171 | CFB_LOWER |  |  | 330 | pF | Lower feedback resistor decoupling <br> capacitor |

Table 7 - DER-946Q PIXIs Spreadsheet.

## $9 \quad$ Performance Data

Note: 1. Measurements were taken with the unit under test set-up inside a thermal chamber placed inside a High Voltage (HV) room.


Figure 11 - High Voltage Test Set-up.


Figure 12 - Test Set-up Inside the High Voltage Room.
2. Unit under test was placed under a box while inside the thermal chamber to eliminate the effect of any airflow.


Figure 13 - Unit under test placed under a box to eliminate the effect of airflow.
3. For data points showing performance across varying input line voltages and output load currents, the unit under test was soaked at full load condition for at least 5 min. for every change in the input voltage during the start of every test sequence. Also, for every loading condition, unit under test was soaked for at least 20 s before measurements were taken.

### 9.1 No-Load Input Power

Figure 14 shows the test set up diagram for no load input current acquisition. The voltage metering point is placed before the ammeter; this is done to prevent the voltage sensing bias current from affecting the input current measurement. The ammeter used was Tektronix DMM 4050 6-1/2 Digit Precision Multimeter.


Figure 14 - No-Load Input Power Measurement Diagram.

The unit was soaked for ten minutes before starting data averaging of fifty thousand samples over a period of one minute. Analog filtering is also enabled to improve measurement accuracy.


Figure 15 - No-Load Input Power vs. Input Voltage.

### 9.2 Efficiency

### 9.2.1 Line Efficiency

Line efficiency describes how the change in input voltage affects the overall efficiency of the unit.


Figure 16 - Full Load Efficiency vs. Input Line Voltage.

### 9.2.2 Load Efficiency

Load efficiency describes how the change in output loading conditions affects the overall efficiency of the unit.
9.2.2.1 Efficiency vs. Load at $105^{\circ} \mathrm{C}$ Ambient


Figure 17 - Efficiency vs. Load at Different Input Voltages ( $105^{\circ} \mathrm{C}$ Ambient).

### 9.2.2.2 Efficiency vs. Load at $25^{\circ} \mathrm{C}$ Ambient



Figure 18 - Efficiency vs. Load at Different Input Voltages ( $25^{\circ} \mathrm{C}$ Ambient).
9.2.2.3 Efficiency vs. Load at $-40^{\circ} \mathrm{C}$ Ambient


Figure 19 - Efficiency vs. Load at Different Input Voltages ( $-40^{\circ} \mathrm{C}$ Ambient).

### 9.3 Output Line and Load Regulation at $105^{\circ} \mathrm{C}$ Ambient



Figure 20 - Output Regulation vs. Load at Different Input Voltages ( $105^{\circ} \mathrm{C}$ Ambient).

### 9.4 Output Line and Load Regulation at $25^{\circ} \mathrm{C}$ Ambient



Figure 21 - Output Regulation vs. Load vs. Line Voltage ( $25^{\circ} \mathrm{C}$ Ambient).

### 9.5 Output Line and Load Regulation at - $40^{\circ} \mathrm{C}$ Ambient



Figure 22 - Output Regulation vs. Load vs. Line Voltage ( $-40^{\circ} \mathrm{C}$ Ambient).

## 10 Thermal Performance

### 10.1 Thermal Data at $105^{\circ} \mathrm{C}$ Ambient Temperature

The unit was placed inside a thermal chamber and soaked for at least 1 hour to allow component temperatures to settle.

| Critical components | Input Voltage |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathbf{3 0} \mathbf{~ V}$ | $\mathbf{8 0 0} \mathbf{V}$ | $\mathbf{1 0 0 0} \mathbf{~ V}$ |
| Primary Snubber Resistor | 117.2 | 120 | 121.45 |
| InnoSwitch3-AQ | $125.7^{4}$ | 123.55 | $127.35^{4}$ |
| Transformer Core | 114.7 | 122.7 | 124.75 |
| Transformer Wire | 117.25 | 123.95 | 126.5 |
| SR FET | 115.9 | 122.85 | 124.9 |
| Secondary Snubber Resistor | 114.15 | 122.5 | 125.15 |
| Output Capacitor | 112.35 | 119.9 | 120.95 |
| Input CMC | 114.95 | 121.7 | 122.7 |
| Ambient Temperature | 105.55 | 106.35 | 107.35 |

Table 8 - Thermals Data at $105^{\circ} \mathrm{C}$ at Different Input Voltages.


Figure 23 - Component Temperatures at $105^{\circ} \mathrm{C}$ Ambient, 1000 V Input.

[^2]
### 10.2 Thermals Data at $25^{\circ} \mathrm{C}$ Ambient Temperature

The following thermal scans are captured using a Fluke thermal imager after soaking for at least 1 hour in an enclosure to minimize the effect of air flow.

| Critical Components | Input Voltage |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathbf{3 0} \mathbf{V}$ | $\mathbf{8 0 0} \mathbf{V}$ | $\mathbf{1 0 0 0} \mathbf{~ V}$ |
| Primary Snubber Resistor | 49.8 | 46.0 | 52.2 |
| InnoSwitch3-AQ | 51.7 | 46.5 | 49.1 |
| Transformer Core | 41.1 | 44.7 | 47.7 |
| Transformer Wire | 43.8 | 47.4 | 50.9 |
| SR FET | 41.9 | 45.9 | 48.3 |
| Secondary Snubber Resistor | 40.6 | 46.2 | 49.7 |
| Output Capacitor | 38.9 | 40.5 | 42.1 |
| Input CMC | 41.0 | 41.4 | 43.8 |
| Ambient Temperature | 26.7 | 27.5 | 29.2 |

Table 9 - Thermals Data at $25^{\circ} \mathrm{C}$ at Different Input Voltages.


Figure 24 - Top PCB (Left) and Bottom PCB (Right) Thermal Scans at 30 V Input.


Figure 25 - Top PCB (Left) and Bottom PCB (Right) Thermal Scans at 800 V Input.


Figure 26 - Top PCB (Left) and Bottom PCB (Right) Thermal Scans at 1000 V Input.

## 11 Waveforms

### 11.1 Start-Up Waveforms

### 11.1.1 $25^{\circ} \mathrm{C}$ Ambient Temperature

The following measurements were taken by hot plugging-in the unit under test to a DC link capacitor fully charged ${ }^{5}$ to a test input voltage of $\mathrm{HV}+$.
11.1.1.1 Output Voltage and Current ${ }^{6,7}$


Figure 27 - Output Voltage and Current. $60 \mathrm{~V}_{\mathrm{DC}}, 1.333 \mathrm{~A}$ Load. CH1: HV+, $20 \mathrm{~V} /$ div. CH2: Iout, $500 \mathrm{~mA} / \mathrm{div}$. CH3: Vout, $2 \mathrm{~V} /$ div. Time: $200 \mathrm{~ms} / \mathrm{div}$.

Figure 28 - Output Voltage and Current. $800 \mathrm{~V}_{\mathrm{DC}} 1.333$ A Load.
CH1: HV+, $500 \mathrm{~V} /$ div.
CH2: Iout, $500 \mathrm{~mA} / \mathrm{div}$.
CH3: Vout, $2 \mathrm{~V} / \mathrm{div}$. Time: $200 \mathrm{~ms} / \mathrm{div}$.

[^3]

Figure 29 - Output Voltage and Current. 1000 VDc, 1.333 A Load. CH1: HV+, $500 \mathrm{~V} / \mathrm{div}$. CH2: Iout, $500 \mathrm{~mA} /$ div. CH3: Vout, $2 \mathrm{~V} / \mathrm{div}$. Time: $200 \mathrm{~ms} /$ div.

### 11.1.1.2 InnoSwitch3-AQ Drain Voltage and Current ${ }^{8,9}$



Figure 30 - INN3947CQ Drain Voltage and Current. $60 \mathrm{~V}_{\mathrm{D}}, 1.333$ A Load.
CH1: HV+, $100 \mathrm{~V} / \mathrm{div}$.
CH2: $\mathrm{ID}, 1 \mathrm{~A} / \mathrm{div}$.
CH3: VDs, $200 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} / \mathrm{div}$.


Figure 31 - INN3947CQ Drain Voltage and Current. 800 VDC, 1.333 A Load.
CH1: HV+, $500 \mathrm{~V} / \mathrm{div}$.
CH2: Id, 1 A / div.
CH3: VDs, $500 \mathrm{~V} /$ div.
Time: $200 \mathrm{~ms} /$ div.


Figure 32 - INN3947CQ Drain Voltage and Current. 1000 VDC, 1.333 A Load.
CH1: HV+, $500 \mathrm{~V} / \mathrm{div}$.
CH2: Id, 1 A / div.
CH3: VDs, $500 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} / \mathrm{div}$.

[^4]
### 11.1.1.3 SR FET Drain Voltage and Current ${ }^{10,11}$



Figure 33 - SR FET Drain Voltage and Current. 60 Voc, 1.333 A Load.
CH1: HV+, $200 \mathrm{~V} / \mathrm{div}$.
CH2: Id, $10 \mathrm{~A} / \mathrm{div}$.
CH3: V $\mathrm{VS}, 10 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} /$ div.


Figure 34 - SR FET Drain Voltage and Current. 800 VDC, 1.333 A Load.
CH1: HV+, $500 \mathrm{~V} / \mathrm{div}$.
CH2: Id, $10 \mathrm{~A} / \mathrm{div}$.
CH3: $\mathrm{V}_{\mathrm{DS}} 50 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} / \mathrm{div}$.


Figure 35 - SR FET Drain Voltage and Current. $1000 \mathrm{~V}_{\mathrm{DC}}, 1.333$ A Load.
CH1: HV+, $500 \mathrm{~V} /$ div.
CH2: Id, $10 \mathrm{~A} / \mathrm{div}$.
CH3: $\mathrm{V}_{\mathrm{DS},} 50 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} / \mathrm{div}$.

[^5]
### 11.1.2 - $40^{\circ} \mathrm{C}$ Ambient Temperature

### 11.1.2.1 Output Voltage and Current ${ }^{12,13}$



Figure 36 - Output Voltage and Current.
60 V $\mathrm{D}, 1.333 \mathrm{~A}$ Load.
CH1: HV+, $20 \mathrm{~V} / \mathrm{div}$.
CH2: Iout, $500 \mathrm{~mA} /$ div.
CH3: Vout, $2 \mathrm{~V} / \mathrm{div}$.
Time: $200 \mathrm{~ms} / \mathrm{div}$.


[^6]
### 11.1.2.2 InnoSwitch3-AQ Drain Voltage and Current ${ }^{14,15}$



Figure 39 - INN3947CQ Drain Voltage and Current. 60 VDC, 1.333 A Load.
CH1: HV+, $50 \mathrm{~V} /$ div.
CH2: Id, $500 \mathrm{~mA} / \operatorname{div}$.
CH3: VDs, 150 V / div.
Time: $100 \mathrm{~ms} / \operatorname{div}$.


Figure 40 - INN3947CQ Drain Voltage and Current. 800 V $\mathrm{DC}, 1.333$ A Load.
CH1: HV+, $200 \mathrm{~V} /$ div.
CH2: Id, 2 A / div.
CH3: VDs, $200 \mathrm{~V} /$ div.
Time: $100 \mathrm{~ms} /$ div.


Figure 41 - INN3947CQ Drain Voltage and Current. $1000 \mathrm{~V}_{\mathrm{DC}}$, 1.333 A Load.
CH1: HV+, $500 \mathrm{~V} /$ div.
CH2: Id, 1 A / div.
CH3: VDs, $500 \mathrm{~V} /$ div.
Time: $100 \mathrm{~ms} /$ div.

[^7]
### 11.1.2.3 SR FET Drain Voltage and Current ${ }^{16,17}$



Figure 42 - SR FET Drain Voltage and Current.
$60 \mathrm{~V}_{\mathrm{DC}}, 1.333 \mathrm{~A}$ Load.
$\mathrm{CH} 1: \mathrm{HV}+, 20 \mathrm{~V} / \mathrm{div}$.
CH2: Id, 5 A / div.
CH3: VDs, $10 \mathrm{~V} /$ div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.


Figure 43 - SR FET Drain Voltage and Current. $800 \mathrm{~V}_{\mathrm{DC}}, 1.333 \mathrm{~A}$ Load.
CH1: HV+, $200 \mathrm{~V} /$ div.
CH2: Id, 5 A / div.
CH3: Vos, $50 \mathrm{~V} /$ div.
Time: 100 ms / div.


Figure 44 - SR FET Drain Voltage and Current. $1000 \mathrm{~V}_{\mathrm{D}}, 1.333 \mathrm{~A}$ Load.
CH1: HV+, $500 \mathrm{~V} /$ div.
CH2: Id, 10 A / div.
CH3: VDS, $50 \mathrm{~V} / \mathrm{div}$.
Time: $100 \mathrm{~ms} /$ div.

[^8]
### 11.2 Steady-State Waveforms

### 11.2.1 Switching Waveforms at $105^{\circ} \mathrm{C}$ Ambient Temperature

### 11.2.1.1 Normal Operation Component Stress

| Steady-State Switching Waveforms $105{ }^{\circ} \mathrm{C}$ Ambient, Full Load |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Input | INN3947CQ |  | 18 V SR FET |  |
| VIn(V) | $\begin{gathered} \text { IC1 } \\ \text { VDS(V) } \end{gathered}$ | Vstress(\%) | $\begin{gathered} \text { Q1 } \\ \text { VDS(V) } \end{gathered}$ | Vstress(\%) |
| 30 | 260.5 | 15.32 | 19.02 | 12.68\% |
| 60 | 332 | 19.53 | 17.3 | 11.53\% |
| 800 | 1030 | 60.59 | 124 | 82.67\% |
| 1000 | 1240 | 72.94 | 139.3 | 92.67\% |

Table 10 - Summary of Critical Component Voltage Stresses at $105^{\circ} \mathrm{C}$ Ambient Temperature


Figure 45 - InnoSwitch3-AQ and SR FET Drain Voltage. 30 Voc, 1.333 A Load, $105^{\circ} \mathrm{C}$ Ambient. CH1: VQ1,vDs, $10 \mathrm{~V} /$ div.
CH2: Vici,vos, $200 \mathrm{~V} / \mathrm{div}$.
Time: $20 \mu \mathrm{~s} / \mathrm{div}$.


Figure 46 - InnoSwitch3-AQ and SR FET Drain Voltage. $60 V_{D C}, 1.333$ A Load, $105^{\circ} \mathrm{C}$ Ambient. CH1: VQ1,vDs, $10 \mathrm{~V} / \mathrm{div}$.
CH2: Vic1,vDs, $200 \mathrm{~V} / \mathrm{div}$.
Time: $20 \mu \mathrm{~s} / \mathrm{div}$.


Figure 47 - InnoSwitch3-AQ and SR FET Drain Voltage. $800 \mathrm{~V}_{\mathrm{DC}}, 1.333$ A Load, $105^{\circ} \mathrm{C}$ Ambient. CH1: VQ1,vDs, $50 \mathrm{~V} / \mathrm{div}$.
CH2: Vic1,vDs, $500 \mathrm{~V} / \mathrm{div}$.
Time: $20 \mu \mathrm{~s} / \mathrm{div}$.


Figure 48 - InnoSwitch ${ }^{\text {TM }} 3$-AQ and SR FET Drain Voltage. $1000 \mathrm{~V}_{\mathrm{DC}}, 1.333$ A Load, $105^{\circ} \mathrm{C}$ Ambient. CH1: VQ1,vDs, $50 \mathrm{~V} / \mathrm{div}$.
CH2: Vic1,vDS, $500 \mathrm{~V} / \mathrm{div}$.
Time: $20 \mu \mathrm{~s} / \mathrm{div}$.

### 11.2.1.2 Short-Circuit Response

The unit is tested by applying output short circuit during normal working conditions and then removing the short circuit to see if the unit will recover and operate normally. The expected response during short-circuit is for the unit to go to AR (auto restart) mode.


Figure 49 - InnoSwitch3-AQ and SR FET Drain Voltage. 30 VDC, Full Load-Short-Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: VQ1,vos, $10 \mathrm{~V} / \operatorname{div}$.
CH2: Vici,vos, $100 \mathrm{~V} / \mathrm{div}$.
Time: $20 \mu \mathrm{~s} / \mathrm{div}$.


Figure 50 - InnoSwitch3-AQ and SR FET Drain Voltage. 60 VDC, Full Load-Short-Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: VQ1,vos, $10 \mathrm{~V} / \mathrm{div}$.
CH2: Vic1,vDs, 200 V / div.
Time: $20 \mu \mathrm{~s} / \mathrm{div}$.


Figure 51 - InnoSwitch3-AQ and SR FET Drain voltage. $800 \mathrm{~V}_{\mathrm{DC}}$, Full Load-Short-Full Load, $105^{\circ} \mathrm{C}$ ambient.
CH1: VQ1,vDs, $50 \mathrm{~V} /$ div.
CH2: Vic1,vDs, $500 \mathrm{~V} / \mathrm{div}$.
Time: $20 \mu \mathrm{~s} / \mathrm{div}$.


Figure 52 - InnoSwitch3-AQ and SR FET Drain voltage. $1000 \mathrm{~V}_{\mathrm{DC}}$, Full Load-Short-Full Load, $105^{\circ} \mathrm{C}$ ambient.
CH1: Vq1,vDs, $50 \mathrm{~V} / \mathrm{div}$.
CH2: Vici,vos, $500 \mathrm{~V} / \mathrm{div}$.
Time: $20 \mu \mathrm{~s} / \mathrm{div}$.

### 11.2.2 Switching Waveforms at $25^{\circ} \mathrm{C}$ Ambient Temperature

### 11.2.2.1 InnoSwitch3-AQ Drain Voltage and Current



Figure 53 - INN3947CQ Drain Voltage and Current. $30 \mathrm{~V}_{\mathrm{DC}}, 1.333$ A Load.
CH1: VDs, $100 \mathrm{~V} /$ div.
CH2: Id, $500 \mathrm{~mA} / \mathrm{div}$.
Time: $10 \mu \mathrm{~s} / \mathrm{div}$.


Figure 54 - INN3947CQ Drain Voltage and Current. $60 \mathrm{~V}_{\mathrm{DC}}, 1.333 \mathrm{~A}$ Load.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{DS}}, 100 \mathrm{~V} /$ div.
CH2: Id, $500 \mathrm{~mA} /$ div.
Time: $10 \mu \mathrm{~s} / \mathrm{div}$.


Figure 55 - INN3947CQ Drain Voltage and Current. $800 \mathrm{~V}_{\mathrm{DC}}, 1.333$ A Load.
CH1: Vds, $500 \mathrm{~V} /$ div.
CH2: Id, 1 A / div.
Time: $20 \mu \mathrm{~s} / \mathrm{div}$.


Figure 56 - INN3947CQ Drain Voltage and Current.
$1000 \mathrm{~V}_{\mathrm{D}}, 1.333$ A Load.
CH1: VDs, $500 \mathrm{~V} /$ div.
CH2: Id, 1 A / div.
Time: $20 \mu \mathrm{~s} / \mathrm{div}$.

### 11.2.2.2 SR FET Drain Voltage and Current



Figure 57 - SR FET Drain Voltage and Current.
$30 \mathrm{~V}_{\mathrm{DC}}, 1.333$ A Load.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{DS}}, 10 \mathrm{~V} / \mathrm{div}$.
CH2: Id, $10 \mathrm{~A} / \mathrm{div}$.
Time: $10 \mu \mathrm{~s} / \mathrm{div}$.


Figure 58 - SR FET Drain Voltage and Current.
$60 \mathrm{~V}_{\mathrm{DC}}, 1.333$ A Load.
$\mathrm{CH} 1: \mathrm{V}_{\mathrm{DS}}, 10 \mathrm{~V} / \mathrm{div}$.
CH2: Id, $10 \mathrm{~A} / \mathrm{div}$.
Time: $10 \mu \mathrm{~s} / \mathrm{div}$.


### 11.3 Load Transient Response

Output voltage waveform on the board was captured with dynamic load transient from 0\% to $50 \%$ and $50 \%$ to $100 \%$. The duration for the load states is set to 100 ms and the load slew rate is $100 \mathrm{~mA} / \mu \mathrm{s}$. The test is done at $105^{\circ} \mathrm{C}$ ambient temperature.

| Dynamic Load Settings | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}} \\ & (\mathrm{~V}) \\ & \hline \end{aligned}$ | $\Delta V_{\text {out }}$ (V) | Vout(MAX) <br> (V) | Vout(Min) <br> (V) |
| :---: | :---: | :---: | :---: | :---: |
| 0\% to 50\% | 30 | 0.636 | 7.50 | 6.86 |
|  | 60 | 0.196 | 7.52 | 7.31 |
|  | 400 | 0.192 | 7.54 | 7.34 |
|  | 800 | 0.143 | 7.52 | 7.38 |
|  | 1000 | 0.235 | 7.59 | 7.35 |
| 50\% to 100\% | 30 | 0.479 | 7.49 | 7.01 |
|  | 60 | 0.233 | 7.52 | 7.29 |
|  | 400 | 0.264 | 7.57 | 7.30 |
|  | 800 | 0.271 | 7.58 | 7.30 |
|  | 1000 | 0.273 | 7.59 | 7.31 |

Table 11 - Load Transient Response.

### 11.3.1 $0 \%$ to $50 \%$



Figure 61 - Output Voltage and Current.
30 VDC, 0\% to 50\% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, $1 \mathrm{~A} / \mathrm{div}$.
Time: $100 \mathrm{~ms} / \operatorname{div}$.
$\Delta \mathrm{V}=636.27 \mathrm{mV}$.


Figure 63 - Output Voltage and Current.
800 VDC, 0\% to 50\% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \operatorname{div}$.
$\Delta \mathrm{V}=143 \mathrm{mV}$.


Figure 62 - Output Voltage and Current. 60 VDC, 0\% to 50\% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, 1 A / div.
Time: 100 ms / div.
$\Delta \mathrm{V}=196.24 \mathrm{mV}$.


Figure 64 - Output Voltage and Current.
1000 VDC, 0\% to 50\% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, 200 mV / div.
CH2: Iout, 1 A / div.
Time: 100 ms / div.
$\Delta \mathrm{V}=235.34 \mathrm{mV}$.

### 11.3.2 $50 \%$ to $100 \%$



Figure 65 - Output Voltage and Current.
$30 \mathrm{~V}_{\mathrm{DC}}$ 0\% to 50\% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, 1 A / div.
Time: 100 ms / div.
$\Delta \mathrm{V}=479.32 \mathrm{mV}$.


Figure 67 - Output Voltage and Current.
$800 \mathrm{~V}_{\mathrm{DC}}$, 0\% to $50 \%$ Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta V=271.3 \mathrm{mV}$.


Figure 66 - Output Voltage and Current.
60 VDC, $0 \%$ to 50\% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta \mathrm{V}=232.52 \mathrm{mV}$.


Figure 68 - Output Voltage and Current
$1000 \mathrm{~V}_{\mathrm{DC}}$ 0\% to 50\% Transient Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $200 \mathrm{mV} /$ div.
CH2: Iout, 1 A / div.
Time: $100 \mathrm{~ms} / \mathrm{div}$.
$\Delta \mathrm{V}=272.72 \mathrm{mV}$.

### 11.4 Output Ripple Measurements

### 11.4.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized to reduce spurious signals due to pick-up. Details of the probe modification are provided in Figure 69 and Figure 70 below.

A CT2708 probe adapter is affixed with a $1 \mu \mathrm{~F} / 50 \mathrm{~V}$ ceramic capacitor placed in parallel across the probe tip. A twisted pair of wires kept as short as possible is soldered directly to the probe and the output terminals.


Figure 69 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed.)


Figure 70 - Oscilloscope Probe with Cal Test CT2708 BNC Adapter. (Modified with Wires for Ripple Measurement, and a Parallel Decoupling Capacitor Added.)

### 11.4.2 Output Voltage Ripple Waveforms

Output voltage ripple waveform at full load was captured at the output terminals using the ripple measurement probe with decoupling capacitor.

### 11.4.2.1 Output Voltage Ripple at $105^{\circ} \mathrm{C}$ Ambient ${ }^{18}$



楒
Figure 71 - Output Voltage Ripple. 30 Vdc, Full Load, $105^{\circ} \mathrm{C}$ Ambient. CH1: Vout, 50 mV / div. Time: $20 \mathrm{~ms} / \mathrm{div}$. $V_{\text {RIPPLE }}=119.4 \mathrm{mV}$.


Figure 73 - Output Voltage Ripple. $800 V_{D C}$, Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH 1 : Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=192.8 \mathrm{mV}$.


Figure 72 - Output Voltage Ripple. 60 Vdc, Full Load, $105^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $20 \mathrm{~ms} /$ div.
$V_{\text {RIPPLE }}=152.3 \mathrm{mV}$.


Figure 74 - Output Voltage Ripple.
1000 VDC, Full Load, $105^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=202.5 \mathrm{mV}$.
${ }^{18}$ Peak-to-peak voltage measurement recorded in each oscilloscope capture is the worst-case ripple which includes both the low frequency and high frequency switching voltage ripple (top portion of each capture).

### 11.4.2.2 Output Voltage Ripple at $25^{\circ} \mathrm{C}$ Ambient ${ }^{19}$



Figure 75 - Output Voltage Ripple.
$30 \mathrm{~V}_{\mathrm{DC}}$, Full Load, $25^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} /$ div.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=157.9 \mathrm{mV}$.


Figure 77 - Output Voltage Ripple.
800 Voc, Full Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=226.6 \mathrm{mV}$.


Figure 76 - Output Voltage Ripple.
60 VC, Full Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=197.9 \mathrm{mV}$.


Figure 78 - Output Voltage Ripple.
1000 V DC , Full Load, $25^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} /$ div.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=236.6 \mathrm{mV}$.

[^9]
### 11.4.2.3 Output Voltage Ripple at $-40^{\circ} \mathrm{C}$ Ambient ${ }^{20}$

Probe extension using twisted pair wires was implemented for the test performed at -40 ${ }^{\circ} \mathrm{C}$ ambient temperature due to the inaccessibility of the probing point once placed inside the thermal chamber. To compensate for the effects of the probe extension, values shown on the figures below must be increased by $74.66 \mathrm{mV}_{\mathrm{PP}}{ }^{21}$.


Figure 79 - Output Voltage Ripple. $30 V_{D C}$, Full Load, $-40^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=130 \mathrm{mV}$.


Z
Figure 81 - Output Voltage Ripple.
800 Voc, Full Load, $-40^{\circ} \mathrm{C}$ Ambient. CH1: Vout, $50 \mathrm{mV} /$ div.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=197 \mathrm{mV}$.


Figure $\mathbf{8 0}$ - Output Voltage Ripple.
60 VDC, Full Load, $-40^{\circ} \mathrm{C}$ Ambient.
CH 1 : Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=169 \mathrm{mV}$.


Figure 82 - Output Voltage Ripple.
1000 Vdc, Full Load, $-40^{\circ} \mathrm{C}$ Ambient.
CH1: Vout, $50 \mathrm{mV} / \mathrm{div}$.
Time: $20 \mathrm{~ms} / \mathrm{div}$.
$V_{\text {RIPPLE }}=203 \mathrm{mV}$.

[^10]
### 11.4.3 Output Ripple vs. Load

11.4.3.1 Output Ripple at $105^{\circ} \mathrm{C}$ Ambient


Figure 83 - Output Ripple Voltage ( $105^{\circ} \mathrm{C}$ Ambient).

### 11.4.3.2 Output Ripple at $25^{\circ} \mathrm{C}$ Ambient



Figure 84 - Output Ripple Voltage ( $25^{\circ} \mathrm{C}$ Ambient).

### 11.4.3.3 Output Ripple at $-40^{\circ} \mathrm{C}$ Ambient

Output voltage ripple data at $-40^{\circ} \mathrm{C}$ ambient temperature shown below includes the 74.66 $\mathrm{mV} \mathrm{Pp}^{22}$ offset to compensate for the effect the probe extensions had on the voltage ripple values.


Figure 85 - Output Ripple Voltage ( $-40^{\circ} \mathrm{C}$ Ambient).

[^11]
## 12 Diagnostic Circuit

The diagnostic circuit was tested by applying the following signals and settings:
PSU_CHECK: 3.3 V and 5 V
PGOOD_DETECT: 5 V with $500 \Omega$ pull up resistor ( 10 mA )
7.5 V Output: No-load and full load (10 W)


Figure 86 - Diagnostic Circuit.
PSU_CHECK = 5 V, PGOOD_DETECT = 5 V, No-Load.
CH1: Vpsu_check, $2 \mathrm{~V} /$ div.
CH2: Vpgood_detect, 2 V / div.
CH3: Vout, $2 \mathrm{~V} / \mathrm{div}$.


Figure 88 - Diagnostic Circuit.
PSU_CHECK = 3.3 V, PGOOD_DETECT = 5 V , No-Load.
CH1: Vpsu_check, $2 \mathrm{~V} /$ div.
CH2: Vpgood_detect, $2 \mathrm{~V} /$ div.
CH3: Vout, $2 \mathrm{~V} / \mathrm{div}$.


Figure 87 - Diagnostic Circuit.
PSU_CHECK = 5 V, PGOOD_DETECT = 5 V, Full Load.
CH1: Vpsu_check, $2 \mathrm{~V} / \mathrm{div}$.
CH2: Vpgood_detect, 2 V / div.
CH3: Vout, $2 \mathrm{~V} / \mathrm{div}$.


Figure 89 - Diagnostic Circuit.
PSU_CHECK = 3.3 V, PGOOD_DETECT = 5 V, Full Load.
CH1: Vpsu_check, $2 \mathrm{~V} /$ div.
CH2: Vpgood_detect, 2 V / div.
CH3: Vout, $2 \mathrm{~V} / \mathrm{div}$.

## 13 Revision History

| Date | Author | Revision | Description \& Changes | Reviewed |
| :---: | :---: | :---: | :--- | :---: |
| 28-Apr-22 | JB | 1.0 | Initial Release. | Apps \& Mktg |
| 22-Jul-22 | JB | 1.1 | Updated Figure 5 and 19. Updated sections <br> $2.2,6,7.5$ and 9.1. Added Ambient <br> Waveforms. | Apps \& Mktg |
| $31-\mathrm{Jul-23}$ | JS | 2.0 | Updated and added sections and figures for <br> the data at $-40^{\circ} \mathrm{C}$ ambient temperature test <br> condition. | Apps \& Mktg |
|  |  |  |  |  |

## For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' automotive RDHP and DER in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

## Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc.

## Power Integrations Worldwide Sales Support Locations

## WORLD HEADQUARTERS

5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Worldwide: +1-65-635-64480
Americas: +1-408-414-9621
e-mail: usasales@power.com

GERMANY (AC-DC/LED Sales)
Einsteinring 24
85609 Dornach/Aschheim Germany
Tel: +49-89-5527-39100
e-mail: eurosales@power.com

GERMANY (Gate Driver Sales)
HellwegForum 1
59469 Ense
Germany
Tel: +49-2938-64-39990
e-mail: igbt-driver.sales@
power.com

## INDIA

\#1, $14^{\text {th }}$ Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
e-mail: indiasales@power.com

ITALY
Via Milanese 20, $3^{\text {rd }}$. FI.
20099 Sesto San Giovanni (MI) Italy
Phone: +39-024-550-8701
e-mail: eurosales@power.com

## JAPAN

Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi,
Kanagawa 222-0033 Japan
Phone: +81-45-471-1021
e-mail: japansales@power.com

## KOREA

RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
e-mail: koreasales@power.com

## SINGAPORE

51 Newton Road,
\#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
e-mail:
singaporesales@power.com

## TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
e-mail:
taiwansales@power.com

UK
Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge
CB4 1YG
Phone: +44 (0) 7823-557484
e-mail: eurosales@power.com


[^0]:    ${ }^{1}$ Clearance and creepage distances are derived from IEC 60664-1 and IEC 60664-4.

[^1]:    ${ }^{3}$ All components are AEC-Q qualified except connectors, T1 and L1.

[^2]:    ${ }^{4}$ Increasing the cooling area in the actual design or having a provision for heatsink or thermal pad between source pad and thermal area of the device and the enclosure is recommended.

[^3]:    ${ }^{5}$ Inrush current was limited by adding a $10 \Omega$ series resistor between the DC link capacitor and the unit under test.
    ${ }^{6}$ Voltage dip on the HV+ waveform is due to the effective line impedance from the DC link capacitor to the unit under test.
    ${ }^{7}$ The instances of small step increase seen on the Iout waveform is due to the CR (Constant Resistance) mode response of the electronic load. The delay between $V_{\text {out }}$ and Iout rising edge is also due to the electronic load response.

[^4]:    ${ }^{8}$ The time between when HV+ is turned on and the InnoSwitch starts switching is due to the "Wait and Listen" period of the InnoSwitch.
    ${ }^{9}$ The change in the switching frequency of the InnoSwitch is due to the CR (Constant Resistance) mode response of the electronic load.

[^5]:    ${ }^{10}$ The time between when HV+ is turned on and the SR FET starts switching is due to the "Wait and Listen" period of the InnoSwitch.
    ${ }^{11}$ The change in the switching frequency of the SR FET is due to the CR (Constant Resistance) mode response of the electronic load.

[^6]:    ${ }^{12}$ Voltage dip on the HV+ waveform is due to the effective line impedance from the DC link capacitor to the unit under test.
    ${ }^{13}$ The instance of small step increase seen on the Iout waveform is due to the CR (Constant Resistance) mode response of the electronic load. The delay between $\mathrm{V}_{\text {out }}$ and I Iout rising edge is also due to the electronic load response.

[^7]:    ${ }^{14}$ The time between when HV+ is turned on and the InnoSwitch starts switching is due to the "Wait and Listen" period of the InnoSwitch.
    ${ }^{15}$ The change in the switching frequency of the InnoSwitch is due to the CR (Constant Resistance) mode response of the electronic load.

[^8]:    ${ }^{16}$ The time between when HV+ is turned on and the SR FET starts switching is due to the "Wait and Listen" function of the InnoSwitch.
    ${ }^{17}$ The change in the switching frequency of the SR FET is due to the CR (Constant Resistance) mode response of the electronic load.

[^9]:    ${ }^{19}$ Peak-to-peak voltage measurement recorded in each oscilloscope capture is the worst-case ripple which includes both the low frequency and high frequency switching voltage ripple (top portion of each capture).

[^10]:    ${ }^{20}$ Peak-to-peak voltage measurement recorded in each oscilloscope capture is the worst-case ripple which includes both the low frequency and high frequency switching voltage ripple (top portion of each capture).
    ${ }^{21} 74.66 \mathrm{mV}$ Pp is the average value of the difference between the output voltage ripple measurements obtained while using a short and extended probe at $25^{\circ} \mathrm{C}$ ambient temperature.

[^11]:    2274.66 mV Pp is the average value of the difference between the output voltage ripple measurements obtained while using a short and extended probe at $25^{\circ} \mathrm{C}$ ambient temperature.

